
This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 953163. It is the property of the DOME 4.0 consortium and do not necessarily reflect the
views of the European Commission.

Deliverable D3.6 - “CUDS specification and reference
implementation”

Responsible Partner: UCL 31.08.2023

Contributor(s): Fraunhofer, SINTEF, UNIBO 13.08.2023
Reviewer(s): Bjørn Tore Løvfall (SINTEF)

Willem van Dorp (UNR)
29.08.2023
31.08.2023

Coordinator: CMCL Innovations 31.08.2023
Dissemination Level: Public

Due Date: M30 (June, 2023)

Submission Date: 31 August 2023

Project Profile
Programme Horizon 2020

Call H2020-NMBP-TO-IND-2020-twostage

Topic DT-NMBP-40-2020
Creating an open marketplace for industrial data (RIA)

Project number 953163

Acronym DOME 4.0

Title Digital Open Marketplace Ecosystem 4.0

Start Date December 1st, 2020

Duration 48 months

D3.6 – CUDS specification & reference implementation

[Public] - Page 1 of 19 -

Document History

Version Date Author Remarks

V0.1 19.05.2023 Mike Wang Initial template

V0.15 20.05.2023 Adham Hashibon Adapted Intro

V0.5 13.8.2023 Adham Hashibon
Report on recent CUDS

Developments

V0.6 29.8.2023 Adham Hashibon
Address review comments

from CMCL and SINTEF

V0.7 31.8.2023 Adham Hashibon Add lessons learnt

D3.6 – CUDS specification & reference implementation

[Public] - Page 2 of 19 -

Executive Summary

The existing SimPhoNy Common Universal Data Structures (CUDS, https://github.com/simphony/osp-

core, implemented in Python) have been extended and adapted to support multiple features needed for

the DOME 4.0 marketplace eco system. The new CUDS are hosted on a new official “future features”

branch maintained by the UCL IMD Group (https://github.com/SimPhoNy-Future/osp-core) for

continuous development, advancement and distribution of SimPhoNy. The DOME 4.0 CUDS (DOME-CUDS)

support efficient semantic data exchange across platforms providing support for granular levels of

application specific semantics. The CUDS specification has been extended with simple relations that

enable composition of structured data entities and triples including support for Literals and physical units.

This will enable readily an implementation for the applications and platforms needed by the showcases.

An updated, functional form of the DOME 4.0 eco system and Data Set Ontologies are proposed, enabling

the direct use of the ontology in applications. The CUDS are data structures that draw their structure and

semantic attributes and properties directly from the underlying ontologies. Support for serialization of

the CUDS into JavaScript Object Notation (JSON) and Linked JSON (JSON-LD) constructs is enhanced to

enable implementation and handling of data in a distributed web environment. Finally, a lightweight triple

store is developed (sigraDB) for CUDS objects that will enable rapid development of the DOME 4.0 clearing

house, standardised semantic connector and enhanced brokerage.

https://github.com/SimPhoNy-Future/osp-core

D3.6 – CUDS specification & reference implementation

[Public] - Page 3 of 19 -

Table of Contents

Executive Summary ... 2

Table of Contents .. 3

List of Figures .. 3

List of Tables ... 4

 Introduction ... 5

1.1 Web data standards and Graph data structures .. 5

1.2 The Common Universal Data Structures (CUDS) ... 8

1.3 Updated CUDS Specifications ... 9

 The SimPhoNy OSP .. 11

2.1.1 General Work on SimPhoNy-Future in DOME 4.0 .. 11

2.2 A new lightweight DOME 4.0 Graph Database .. 11

 Implementing the DOME 4.0 CUDS Data Structures ... 13

3.1 The adaptation of the DOME 4.0 DataSet Ontology .. 14

 Demonstration of the CUDS for a DomeDataSet .. 15

 Conclusions / Next steps ... 15

 Lessons learnt .. 15

 Deviations from Annex 1 ... 17

 References ... 17

 Acknowledgement ... 18

Annex 1 ... 19

List of Figures

Figure 1: The concept of an RDF Triplet ... 5

Figure 2: The concept of Graph Data Structure as means to relate concepts and relation to

metadata. .. 6

Figure 3: An example of an ontology representing the T-Box of the data Catalouge ontology DCAT

which is a W3C standard. .. 7

file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384372
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384373
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384373
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384374
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384374

D3.6 – CUDS specification & reference implementation

[Public] - Page 4 of 19 -

Figure 4: The concept of the CUDS demonstrating their versality transforming and representing

an ontology concept or individual in multitute of forms. .. 8

Figure 4: The definition of data properties in CUDS. .. 9

Figure 5: SimPhoNy provides a CUDS interface to Sessions which act as a container (box) of CUDS

including relations. The Session connects to ultiple backend engines, one of which is an RDF

presistent storage. .. 10

Figure 7: SimPhoNy-Future OSP takes an ontology and converts it into a CUDS class used in the

session to create indivisual instances of data and provides an interoperability layer with simple

API for creating, searching (iterating) of CUDS. .. 12

Figure 8: The various classes of sigraDB showing the data universe which contains a number of

data spaces each containing a graph of triplets CUDS. Access to the universe, spaces and CUDS

can be controlled per user and group. The SigraDB backend will use a git service to keep full

provenance of the changes and enables updates with rollbacks as needed. 13

Figure 10: Aligning the DOME 4.0 Data Set Class under a general CUDS class to enable better

interoperability. .. 14

Figure 9: Aligning the DOME 4.0 Data Set Class under a general CUDS class to enable better

interoperability. .. 14

List of Tables

No table of figures entries found.

file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384375
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384375
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384376
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384377
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384377
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384377
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384378
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384378
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384378
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384379
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384379
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384379
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384379
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384380
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384380
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384381
file:///J:/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D3.6/DOME%204.0%20-%20D3.6%20-%20CUDS%20specification%20and%20reference%20implementation%20-%202023-08-31.docx%23_Toc144384381

D3.6 – CUDS specification & reference implementation

[Public] - Page 5 of 19 -

 Introduction

The DOME 4.0 web platform is a marketplace of marketplaces dealing with data. It focuses on

creating an open data platforms ecosystem that interoperate on various levels. The

interoperability in DOME 4.0 is not aimed only at exchange of large datasets, which remains

within the realm of each platform, but on making the assets and resources findable, through its

web based search engine, accessible, through its connector delegating operations to the

respective platforms, interoperable, through use of open standards, and reusable (in short FAIR),

through the use of open ontology based standards which enable rapid discovery of the data

without the need for human intervention. The Common Universal Structures (CUDS) play a major

role in providing for the FAIRness aspects as it allows encapsulating the entire semantic

(meaning) of the data along with the data itself augmenting it with tools and API for easy handling

and management. In this document we report efforts in Task 3.6 aimed at updating the existing

SimPhoNy CUDS to the demands of DOME.

We start by a short introduction of existing web-based data

structures, and then explain the need for an added semantic

value through the integration with ontologies stemming

from the OntoCommons community and then introduce how

the SimPhoNy CUDS , especially the updated ones (the DOME

CUDS), fulfill these needs for DOME 4.0. Finally, we

demonstrate the use of CUDS for a simple dataset case.

1.1 Web data standards and Graph data structures
The need to represent complex information and data about various applications, user stories,

case scenarios, platforms, and manufacturing or modelling processes calls for advanced data

structures that can cover both data and metadata in a connected consistent manner. World Wide

Web Consortium (W3C) based technologies such as DCAT1, SKOS2, FOAF3, PROVO4, etc., offer a

way to represents entities and catalogues of data but are developed from the onset with world

web applications in mind. They focus primarily on textual representation of resources on the web

as Uniform Resource Identifiers (URI) that are a superset of the Uniform Resource Names (URN)

which can be e.g., an ISBN of a book or a Uniform Resource Locator (URL) in the form of the well-

known html addresses, e.g., ‘https://www.example.com/webpage.html`.

1 World Wide Web Consortium. 2020. "Data Catalog Vocabulary (DCAT) - Version 2." https://www.w3.org/TR/vocab-
dcat-2/
2 World Wide Web Consortium. "SKOS Simple Knowledge Organization System Reference." 2009.
https://www.w3.org/TR/skos-reference/
3 Brickley, Dan, and Libby Miller. "FOAF Vocabulary Specification 0.99." 2014. http://xmlns.com/foaf/spec/
4 World Wide Web Consortium. "PROV-Overview: An Overview of the PROV Family of Documents." 2013.
https://www.w3.org/TR/prov-overview/

Figure 1: The concept of an RDF
Triplet

https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/skos-reference/
http://xmlns.com/foaf/spec/

D3.6 – CUDS specification & reference implementation

[Public] - Page 6 of 19 -

They lack the ability and versatility to represent deeply hierarchical large data structures that

represent the intertwined hierarchical structure of materials, its related applications and

properties. Yet, these W3C based data models are based on profound and widely adopted

technology, most notably the Resource Description Framework (RDF) and the Ontology Web

Language (OWL). The RDF is a standard for describing any resource on the web as a subject-

predicate-object triplet (see Figure 1). The

subject denotes a resource which the data or

information is about, the predicate is the part

that states something relating to the subject,

and the object is the resource that is relating to

the subject. Note that in general an object can

itself act as a subject in another triple

statement. In this way numerous links between

various resources and relations (predicates) can

be built to fully provide a complete knowledge-

based representation of the data.

The RDF are essentially means to represent

graph data structures (See Figure 3) with nodes

representing entities and edges representing

the connections or relations. In fact, when

referring to data we often find the need to explain the metadata. For example, given a set of data

points representing Temperature as a function of Time in a, say, comma separated values (CSV)

file, we need to specify either in the file itself, or as a separate document to be conveyed with

the data that the first column is time and the second is temperature (or vice versa). This is in

addition to any other information that may be needed to allow a human agent to understand

how to interpret and use the data, like units. Graph data structures in general, and RDF in

particular, allow us a much more straightforward and robust means not only to convey this

metadata to a human agent, but make it interpretable by a machine (i.e., an algorithm). Perhaps

most importantly, the metadata and the data can become indistinguishable, hence alleviating

the need to maintain them separately. As shown in the Figure 2, instead of a dump of data in

rows, a graph enables a transparent representation that is traceable by an algorithm.

In RDF, the nodes (or vertices) of the graph are the resources represented as URIs and the edges

or connections (relations) between the nodes being the predicates and represented as either

Object Properties (also URIs) relating two resources, or as Data Properties relating a resource

entity to a lateral value (e.g. string, or number). One more aspect noteworthy of mentioning in

the realm of RDF is the distinction between the terminological foundation, which defines the

vocabulary (terminology) representing various resources and their relations from the actual

instances of such resources. In other word, an Atom for instance can represent a resource of a

term, while Al and O are two different instances (assertions) of the term. The terms (also known

Figure 2: The concept of Graph Data Structure as
means to relate concepts and relation to metadata.

D3.6 – CUDS specification & reference implementation

[Public] - Page 7 of 19 -

as the T-Box) provides the domain of interest through the specification of the vocabulary

representing domain concepts and the relations between them. This terminological knowledge

can be thought of as defining the types of entities that exist in a domain. The specific instances

of domain entities are then specific

individuals that belong to one of the

types in the T-Box.

The T-Box is normally represented

by an ontology, which defines the

entities and their relations. While

powerful, these web ontologies rely

heavily on the textual description of

the URI5 and the existence of a

qualified resource (e.g. a web page).

In essence, the web linked data

structures are designed for

connecting disparate resources on

the internet which are web pages.

Certain applications, especially

from the domain of materials

science, engineering and manufacturing require more versatile data structures that represent

entities that may or may not have corresponding qualified resources in the W3C sense, i.e. they

do not have a web “home pages), and their definition may not be simply given by a URI but rather

require more intricate information. Moreover, significant portion of the data and information

that needs to be coded may require various conceptual models that do not necessarily have to

map to URI’s. Furthermore, these conceptual models may be serialised, or need to be serialised

into various formats, e.g., to be fed into various modelling tools or analysis software, which make

it difficult to manage.

A more coherent, and domain specific data framework is needed, that on the one hand is

compliant with the W3C standard, to achieve widest interoperability with existing web

technologies and take advantage of existing tools, and at the same time enables adaptation to

the technical needs of the applications at hand.

5 Berners-Lee, Tim, Roy Fielding, and Larry Masinter. 2005. "Uniform Resource Identifier (URI): Generic Syntax."
Request for Comments 3986. Internet Engineering Task Force. January 2005. https://www.ietf.org/rfc/rfc3986.txt.

Figure 3: An example of an ontology representing the T-Box of the
data Catalouge ontology DCAT which is a W3C standard.

https://www.ietf.org/rfc/rfc3986.txt

D3.6 – CUDS specification & reference implementation

[Public] - Page 8 of 19 -

1.2 The Common Universal Data Structures (CUDS)
The Common Universal Data Structures (CUDS) were developed originally through the SimPhoNy

FP7 Project 6,7. The CUDS can be seen as a programmatic incarnation of ontology into an object-

oriented framework of classes (the T-Box) and objects (the A-Box). Each CUDS class conveys, and

in fact carries within, the entire axiomatic knowledge that an ontology concept supports, and

consequently any CUDS object (data) carries the same information. This allows on the fly

inference and logic to be applied on the data, rather than needing to rely on external resources

or URIs.

Figure 4 shows schematically how an ontology concept (a class) which has its own data and object

(relations) properties as well as restrictions and axioms given as a textual representation (see

Table 1) can be converted by the SimPhoNy Open Semantic Platform8 (OSP) into an object-

oriented CUDS class (currently implemented using Python) with data properties casted as class

attributes, and the axioms and restrictions as object methods. The properties (i.e., the

predicates) are converted to properties that relate one CUDS class (or object) to another. The

CUDS Classes can then be instantiated in an object-oriented manner into objects which preserve

(inherit) the same attributes, methods, and properties.

The CUDS classes and objects are distinguished from the OWL RDF classes and instances,

respectively, in that they are programmatically query-able, including tracing back the full

6 SimPhoNy FP7 Project. 2019. "SimPhoNy-OSP." GitHub repository. Accessed August 14, 2023.

https://github.com/simphony/simphony-osp.
7 SimPhoNy Project. 2023. "SimPhoNy Documentation (v4.0.0)." Accessed August 14, 2023.

https://simphony.readthedocs.io/en/v4.0.0/.
8 Note, originally OSP referred to Open Simulation Platform, however, since the development has moved to the UCL
IMD Group, the focus is on providing a more general Open Semantic Platform for data management.

Figure 4: The concept of the CUDS demonstrating their versality transforming
and representing an ontology concept or individual in multitute of forms.

https://github.com/simphony/simphony-osp
https://simphony.readthedocs.io/en/v4.0.0/

D3.6 – CUDS specification & reference implementation

[Public] - Page 9 of 19 -

inheritance and ontological structure as they carry the entire ontological information within. In

the next section this concept will be explained in more details with examples.

1.3 Updated CUDS Specifications
A simple yet powerful extension of the CUDS9 is performed to enable rapid and efficient

representation of data structures. A CUDS entity can be related to another entity through a

relation or connection as follows:

CudsA.connect(CudsB, rel=ontologyRelation)

CUDS can have attributes by assigning a data property axiom on the ontology level. For example,

to assign a mass to say, a sample, one would need to define:

CUDS.Sample mass some xsd:double

Then in SimPhoNy OSP one can create a specific sample and assign a mass like so:

my_sample(mass=5)

However, one needs to also assign a unit, e.g., like so:

my_sample(unit=”Kg”)

This approach requires that each property or attribute like mass and unit above to be defined

within the ontology as data properties, which will limit their use as classes (or at least create an

overhead to maintain them) without any added value.

In the new SimPhoNy-Future, we define a universal data property which is called value (Figure

4), that serves as the parent property for all properties. In fact, we limit such properties to the

most generic types of Literals rather than specific properties. A universal connection between

these valued properties and the respective material, or entity attribute is made via a semantic

triple relation:

9 SimPhoNy Project. 2023. "SimPhoNy Documentation (v4.0.0)." Accessed August 14, 2023.

https://simphony.readthedocs.io/en/v4.0.0/.

Figure 5: The definition of data properties in CUDS.

https://simphony.readthedocs.io/en/v4.0.0/

D3.6 – CUDS specification & reference implementation

[Public] - Page 10 of 19 -

This_mass – Cuds.Mass(value=5, units = “Kg”)

my_sample.connect(this_mass, rel=has)

In this way, the valued (numerical, textual, etc) appears on equal footing as other classes in the

ontology and facilitate rapid query.

A second update to the CUDS is done on the relations. In EMMO and other heavy weight

ontology, there are multitude of parthood relations, from the hasPart, to the more obscure

‘isConcomitantWith’. While these may provide added expressive power to the ontology,

they can be cumbersome to use for most cases. Moreover, normally the actual relation type is

easily inferable on the fly from the actual relation. Hence, in the DOME CUDS we rely on one top

relation for all containment or parthood, which is simply a has for a general relation and hasPart

for topological ones.

These two simple updates are sufficient to enable CUDS in DOME to provide means for defining

complex data structures when combined with the SimPhoNy OSP framework for creating and

managing the CUDS. In the next chapter a short introduction to OSP is given followed by a full

example of a CUDS.

Figure 6: SimPhoNy provides a CUDS interface to Sessions which act as a container (box) of CUDS including
relations. The Session connects to multiple backend engines, one of which is an RDF presistent storage.

D3.6 – CUDS specification & reference implementation

[Public] - Page 11 of 19 -

 The SimPhoNy OSP

The SimPhoNy Open Semantic Platform aims at facilitating seamless semantic interoperability

between various tools, platforms, and agents. In the context of DOME 4.0, we are interested in

the ability to map CUDS to ontology on the one end, and the connection to RDF enabled

backends, see Figure 5 on the other. We shall not provide a complete coverage of the SimPhoNy

platform here, and the reader is referred to the official documentation10. We focus here on the

elements that are required for DOME 4.0. Moreover, we emphasise that while SimPhoNy was

developed originally by the FP7 SimPhoNy project consortium, it has since been further

developed through numerous EU projects, including MarketPlace, SimDOME, ReaxPro. Recently,

the main development of SimPhoNy11 has moved formally to the Data Driven Group at the UCL

Institute for Materials Discovery IMD. The current source code, with all modifications adapting

the package for DOME 4.0 are found in the new repository SimPhoNy-Future12.

Two main features of SimPhoNy-Future OSP are of use for DOME 4.0. The first is the ability to

consume existing ontologies, such as DCAT, EMMO, etc., and provide for each class a

corresponding python class. Second, the ability to manage the instances of the classes in a

semantic backend that supports SPARQL queries, as well as interoperability of the existing W3C

eco system supported at least partially by other platforms. Hence, in DOME 4.0 we focus on using

an RDF compliant backend engine for providing a persistent storage as well as mapping of CUDS

to RDF triplets and back without loss of information.

2.1.1 General Work on SimPhoNy-Future in DOME 4.0
Efforts within Task 3.6 in DOME 4.0 consisted of several bug fixes and feature enhancements

including preserving the hierarchy of super classes and support for multiple heterogenous

ontologies. The latter is crucial for DOME 4.0 as we need support for linking classes across

disparate ontologies stemming from different eco systems and communities. For example, one

can link an ontology class emmo.Dataclass from the EMMO namespace, with an ontology

domeo.Crystallography from the dome core ontology, with a relation dcat.keyword from

the DCAT namespace. Moreover, better support for rdfschema and export (serialization) of

CUDS into Json and Json-ld. See13 for a comprehensive list of enhancements done in DOME 4.0.

2.2 A new lightweight DOME 4.0 Graph Database
As the main goal of DOME 4.0 is to enable a semantic backend that connects assets across

platforms in a semantic manner, there is a need to enable the storage of RDF and CUDS triplets

as well as efficient query of such linked data. To this end, UCL developed a light-weight open-

source graph database focused on supporting mainly scientific application data on top of

10 https://simphony.readthedocs.io/en/v4.0.0/index.html
11 https://github.com/simphony/simphony-osp
12 https://github.com/SimPhoNy-Future/osp-core
13 https://github.com/SimPhoNy-Future/osp-core/issues?q=is%3Aissue+

https://simphony.readthedocs.io/en/v4.0.0/index.html
https://github.com/simphony/simphony-osp
https://github.com/SimPhoNy-Future/osp-core
https://github.com/SimPhoNy-Future/osp-core/issues?q=is%3Aissue

D3.6 – CUDS specification & reference implementation

[Public] - Page 12 of 19 -

SimPhoNy-Future. This lightweight scientific graph database (sigraDB) provides a persistent

backend for storing and managing CUDS data structures and is hence a core part of the CUDS eco

system. It includes provision for full SPARQL operations. The main architecture is shown in Figure

7. The development of the code can be found here14. Currently efforts in DOME 4.0 are directed

towards replacing the use of the closed source Allegro Graph with SigraDB starting from the

Knowledge service, and then adding new functionality to enable seamless implementation of the

Clearing House and Connectors.

14 https://github.com/SimPhoNy-Future/sigraDB

Figure 7: SimPhoNy-Future OSP takes an ontology and converts it
into a CUDS class used in the session to create indivisual instances
of data and provides an interoperability layer with simple API for
creating, searching (iterating) of CUDS.

D3.6 – CUDS specification & reference implementation

[Public] - Page 13 of 19 -

 Implementing the DOME 4.0 CUDS Data Structures

The main advantage of utilising SimPhoNy-Future both for the representation of the CUDS and

the backend sigraDB is that developing and implementing further extensions of CUDS for DOME

boils down to simply providing the proper ontology and installing it into the sigraDB and DOME

backends. Instantly, once the ontology is installed, DOME 4.0 can support the full power of CUDS.

In the following we provide first an overview of the efforts to streamline the existing DOME 4.0

eco system core ontology for SimPhoNy-Future and then the development of a lightweight DOME

4.0 ontology (DOMEO) that contains the Data Set Ontology developed in Task 3.1. We show then

how this enables to define a CUDS for a general dataset, platform, and persona. More examples

will be uploaded to the sigraDB repository mentioned before.

Figure 8: The various classes of sigraDB showing the data universe which contains a number of data spaces
each containing a graph of triplets CUDS. Access to the universe, spaces and CUDS can be controlled per user
and group. The SigraDB backend will use a git service to keep full provenance of the changes and enables
updates with rollbacks as needed.

D3.6 – CUDS specification & reference implementation

[Public] - Page 14 of 19 -

3.1 The adaptation of the DOME 4.0 DataSet Ontology
In D3.1 the DOME 4.0 DataSet Ontology was defined by mapping DCAT, FOAF, etc to the emmo

classes. While elegant, this work is rather theoretical and not directly practical. Here, we

reintroduced the same concepts within a light-weight ontology developed specifically for this

purpose and that is designed to also be consistent and integratable with the OntoCommons eco

system. In particular it allows for easy augmentation with EMMO. In this ontology, an entity

named DomeDataSet (see Figure 9) is defined with parts referring to the basic DCAT based

metadata.

This ontology also implements the CUDS updated specifications, namely provides a valued class

and simple has and hasPart relations. These are particularly useful for defining the parts of the

data set as shown in Figure 10. In the Dome Data Set Ontology one can infer the various metadata

elements as semantic entities that are part of the dataset description. Notice the definition of

the Semantic Tier level in the ontology (Figure 10) which accounts for how much knowledge does

DOME 4.0 about a data set and the corresponding access it has. Tier 1 datasets are those that

DOME knows only the set of metadata shown in the figure,

i.e., it is consistent with the DCAT element. Tier 2 provides

additional information about the data sets that exist

internally with respect to an application, while Tier 3

contains the entire knowledge about the data set in a fully

semantic manner. These are internal to DOME 4.0 and are

used in the brokerage algorithm to match the users to

proper data. For example, if the user is seeking to use data

coming from a Lammps MD simulation, it may need to

know which applications can access the data in its row

format (Tier 2).

Figure 10: Aligning the DOME 4.0 Data Set Class under a general CUDS class to enable better interoperability.

Figure 9: Aligning the DOME 4.0 Data Set Class
under a general CUDS class to enable better
interoperability.

D3.6 – CUDS specification & reference implementation

[Public] - Page 15 of 19 -

 Demonstration of the CUDS for a DomeDataSet

See Appendix 1 for a detailed python example of utilizing CUDS and building it for a DOME

dataset.

 Conclusions / Next steps

We have updated CUDS with simple relations and means to attach values and units to physical

properties and developed a new backend persistent storage system in the form of a lightweight

graph database. CUDS are therefore serializable into web standard formats (e.g. TTL, OWL, JSON,

JSON-LD), stored and managed natively in a graph database and triple store, are directly

connected to ontology classes. The CUDS are able to describe native DOME 4.0 Data Sets and

resources in a semantic manner.

In the next steps, a more standardised connector service and provenance system will be

implemented that adds additional semantics to the already existing semantic systems. The new

implementation will enable better easier maintenance for future connectors and provenance

systems. The semantic ontology-based backend of CUDS enables rapid development of such

components.

 Lessons learnt

Significant progress has been made in DOME 4.0 so far, developing a semantic Broker, Connector

and full provenance system required deeper integration with ontology. At the same time, utilising

commercial graph databases proved to be cumbersome to maintain and introduced additional

dependencies while DOME 4.0 did not utilise most of the functionality provided being a meta-

marketplace. Furthermore, the initial Data Set ontology developed was too theoretical (or

idealistic) to be implemented practically into the system and we relied on imposing development

guidelines to use the ontology terms and compliant schemes.

The current developments allow to remedy these shortcomings and enable more rapid

development. An important lesson pertains then to the need to have practicable and actionable

ontology that directly brings an impact on the development. At times, one needs to compromise,

at least temporarily on the desire for a complete, philosophically, and logically consistent

ontology and focus on the practical aspects that enable direct implementation. The use of CUDS

that directly relies on and requires an ontology underlying it, enforced this notion in essence.

CUDS necessitates that ontology is actionable and practicable rather than being left as guidelines

D3.6 – CUDS specification & reference implementation

[Public] - Page 16 of 19 -

for developers. Nonetheless, in DOME 4.0 the commitment for ontology as a semantic basis is

strong and the use of CUDS makes it easier to use the ontology directly. It opens additional

avenues for python-based reasoning enabling to build algorithms that adapt to the ontology

enhancing therefore the experience of the users as well. Moreover, the integration of the sigraDB

graph system relieves DOME 4.0 from the need to rely on proprietary licensed closed source

software which is a risk factor (as the license may change and we may not have access to the

system in the future). sigraDB allows use of various open source graph backends including DOME

4.0 native one just developed or utilising example a APACHE Jena [1]and Fuseki graph DB[2]and

SPARQL front end.

Achieving these new developments, of updating the ontology, making it more practicable,

developing from scratch a new graph DB addressing the needs for DOME 4.0 and integrating the

updated CUDS required significant efforts. Our focus in DOME 4.0 has been from day one to

advance in small steps taking into account an Agile approach. This necessitated starting off with

the best tools available (e.g. using Allegro Graph) and then switching to the more semantic ones

as they become available. We have achieved this albeit with the cost of delay to this deliverable,

which was necessary to allow for the entire code to be developed.

/Applications/Microsoft%20Outlook.app/Contents/Frameworks/EmailRendererKit.framework/Resources/reactRenderer_mac.html#_ftn1
/Applications/Microsoft%20Outlook.app/Contents/Frameworks/EmailRendererKit.framework/Resources/reactRenderer_mac.html#_ftn2

D3.6 – CUDS specification & reference implementation

[Public] - Page 17 of 19 -

 Deviations from Annex 1

No deviations, other than a two-month delay in submitting the report. The delay did not have an

effect of other reports or milestones in the project.

 References

[1] Hashibon, A., et al. "Common universal data structures (CUDS) and vocabulary in the

SimPhoNy integrated framework." (2015).

[2] Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, Martin, Vrgo

c, Domagoj. (2016). Foundations of JSON schema. In Proceedings of the 25th International

Conference on World Wide Web (pp. 263–273). See also

https://en.wikipedia.org/wiki/JSON

[3] Gregg Kellogg, Pierre-Antoine Champin, Dave Longley. JSON-LD 1.1 – A JSON-based

Serialization for Linked Data (W3C Working Draft). [Technical Report] W3C. 2019. hal-

02141614v1

[4] Sporny, Manu, et al. "JSON-LD 1.1." W3C Recommendation, Jul (2020).

D3.6 – CUDS specification & reference implementation

[Public] - Page 18 of 19 -

 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on

previous drafts and for performing the review.

Project partners:

Type Partner Partner full name

1 SME CMCL Computational Modelling Cambridge Limited

2 Research FHG Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung
E.V.

3 Research INTRA Intrasoft International SA

4 University UNIBO Alma Mater Studiorum – Universita di Bologna

5 University EPFL Ecole Polytechnique Federale de Lausanne

6 Research UKRI United Kingdom Research and Innovation

7 Large
Industry

SISW Siemens Industry Software NV

8 Large
Industry

BOSCH Robert Bosch GmbH

9 SME UNR Uniresearch B.V.

10 Research SINTEF SINTEF AS

11 SME CNT Cambridge Nanomaterials Technology LTD

12 University UCL University College London

This document is part of a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 953163. It is the property of the DOME 4.0 consortium
and do not necessarily reflect the views of the European Commission.

D3.6 – CUDS specification & reference implementation

[Public] - Page 19 of 19 -

Annex 1

To include the python CUDS case found at: https://github.com/SimPhoNy-Future/osp-

core/blob/fix-15/examples/future/CUDS_DOME40_SPARQL_1.ipynb

https://github.com/SimPhoNy-Future/osp-core/blob/fix-15/examples/future/CUDS_DOME40_SPARQL_1.ipynb
https://github.com/SimPhoNy-Future/osp-core/blob/fix-15/examples/future/CUDS_DOME40_SPARQL_1.ipynb

