Deliverable D4.1 - Report on data availability, data structure, and data requirements for each showcase | Responsible Partner: | Responsible Partner: UKRI 2 | | | |----------------------|---|-------------|--| | Contributor(s): | Silvia Chiacchiera (UKRI) | 26 May 2022 | | | Reviewer(s): | Adham Hashibon (UCL), Amit Bhave (CMCL) | 25 May 2022 | | | Coordinator: | CMCL Innovations | 28 May 2022 | | | Dissemination Level: | Public | | | | Due Date: | M18 (May, 2022) | | | | Submission Date: | 31.May.2022 | | | #### **Project Profile** | Programme | Horizon 2020 | |----------------|--| | Call | H2020-NMBP-TO-IND-2020-twostage | | Topic | DT-NMBP-40-2020 | | | Creating an open marketplace for industrial data (RIA) | | Project number | 953163 | | Acronym | DOME 4.0 | | Title | Digital Open Marketplace Ecosystem 4.0 | | Start Date | December 1 st , 2020 | | Duration | 48 months | ### **Document History** | Version | Date | Author | Remarks | |---------|--------------|--|---| | V0.1 | 5 April 2022 | Silvia Chiacchiera | Initial structure | | V0.6 | 13 May 2022 | Silvia Chiacchiera, Kok Foong Lee, Bijan Yadollahi, Natalja Schafet, Jörg Hohe, Evgeny Kharlamov, Michael Hoffmann, Vinicius Carrillo Beber, Kristof Vanclooster, Paula Martinez, Lazlo Farkas, Konstantinos Sipsas, Martin Uhrin, Noel Vizcaino, Vasily Bunakov, Martin Horsch, Michael Seaton, Ilian Todorov | Info on I/O data, file formats
and platforms from
showcases #1, 2, 3, 4, 5, 6, 7,
9 transferred to document.
Abbreviations added. | | V0.7 | 16 May 2022 | Silvia Chiacchiera | Introduction, Conclusions added. Formatting, small additions. Elucidations added in Appendix. | | V0.8 | 17 May 2022 | Silvia Chiacchiera | Additions and cleaning up (all sections). Added Appendix 2, with example queries and requirements from partners. | | V0.9 | 25 May 2022 | Adham Hashibon | Review and proof reading | | V0.95 | 26 May 2022 | Silvia Chiacchiera, Kok Foong Lee,
Natalja Schafet, Jörg Hohe, Martin
Uhrin, Michael Hoffmann, Baifan
Zhou | Addressed reviewer comments, added table for showcase #8, minor updates/additions to other tables | | V1.0 | 28 May 2022 | Silvia Chiacchiera, Michael Seaton,
Baifan Zhou | Cleaned up caption
formatting. Row added in
Tables 15 and 16, cleaned up
Table 13. Other minor
additions/updates. | | V1.1 | 28 May 2022 | Amit Bhave | Review of the text and proof reading. Minor revisions. | Public - Page 1 of 54 - ### **Executive Summary** In this deliverable we focus on the nine DOME 4.0 showcases to collect information on data, metadata and platforms involved, aimed at informing the DOME 4.0 platform development. This activity is supported through individual interviews and accompanied by collation of example files. Additionally, example queries are gathered. Public - Page 2 of 54 - ### **Table of Contents** | Exe | cutive Summary | 2 | |------|---|-------| | Tab | le of Contents | 3 | | List | of Tables | 4 | | 1. | Introduction | 5 | | 2. | Showcase #1. Chemical kinetics Knowledge Graph (KG) – marine, air quality | 6 | | 3. | Showcase #2. Light weight construction – fibre reinforced plastics | 10 | | 4. | Showcase #3. Polymeric additives for coatings: anti-corrosion | 14 | | 5. | Showcase #4. Structural adhesives: Fatigue behaviour | 20 | | 6. | Showcase #5. Production equipment tools and service catalogues (metals, plastics, high-tech | າ) 23 | | 7. | Showcase #6. Turnkey services & custom workflows integrating simulations and data | 26 | | 8. | Showcase #7. Formulated consumer products | 29 | | 9. | Showcase #8. Semantic Analytics of Manufacturing Assets | 32 | | 10. | Showcase #9. Virtual development of composite materials | 35 | | 11. | Platforms entering the showcases | 38 | | 12. | File formats entering the showcases | 42 | | 13. | Conclusions / Next steps | 45 | | 14. | Deviations from Annex 1 | 46 | | 15. | Acknowledgements | 47 | | 16. | Table of Abbreviations | 48 | | Ann | ex 1 – Elucidations | 49 | | Δnn | nex 2 – Example of queries and additional requirements | 51 | ### **List of Tables** | Гable 1: Data involved in Showcase #1 | 6 | |--|----| | Table 2: Data involved in Showcase #2 | 10 | | Table 3: Data involved in Showcase #3 (first set) | 14 | | Table 4: Data involved in Showcase #3 (second set) | 17 | | Table 5: Data involved in Showcase #4 | 20 | | Table 6: Data involved in Showcase #5 | 23 | | Table 7: Data involved in Showcase #6 | 26 | | Table 8: Data involved in Showcase #7 | 29 | | Table 9: Data involved in Showcase #8 | 32 | | Table 10: Data involved in Showcase #9 (and also in showcases #3 and #4) | 35 | | Table 11: Platforms involved in the showcases (first set) | 38 | | Table 12: Platforms involved in the showcases (second set) | 40 | | Table 13: File formats involved in the showcases | 42 | | Table 14: Elucidations on the entries of the data tables used in Sections 2-10 | 49 | | Table 15: Example queries | 51 | | Table 16: Examples of additional requirements from data consumers | 54 | #### 1. Introduction This document reports on the activities of Task 4.1 of DOME 4.0 project: "Metadata, Data Acquisition, Curation, and Communication". It summarises the data aspects for DOME 4.0 showcases, to support the development of the DOME 4.0 platform, with a focus on data, metadata and platforms. The material presented here has been iteratively collected during the period from M3 to M18 and collated in the form of a large spreadsheet, that is here broken down into smaller parts for presentation purposes. Realistic example files from the showcases have also been gathered within task 4.1 and have been made available internally, notably for usage within the core work packages (WP1-DOME 4.0 Platform, WP2- Data Tools and Services and WP3- Ontology-driven Interfaces). For example, they have been used to support the implementation of tools assessing data FAIRness (T2.2) and as example datasets for the Ecosystem information model (T3.2). From the very beginning of T4.1, we decided to collect information in a relatively "dry" (i.e. in the form of schematics and tables, avoiding verbosity) format, which allows to have a good overview of the various data types to be handled and is suitable for the aim of this document. Based on the close connection with the partners and the core WPs, we have gathered feedback and iteratively adjusted the spreadsheet to the form presented here. We note in passing that, to describe datasets and platforms, we do not adopt here any specific schema or ontology (as e.g., EMMO, Dublin Core - DC, DCAT), but most of the concepts used are covered there too. We also note that specific user epics and stories, personas and workflows are not the focus of this document and will be described in other project deliverables (e.g., D1.2). For brief introductions to all DOME 4.0 use cases, we point the reader to the dedicated DOME 4.0 webpage¹. This document is structured as follows: in Sections 2 to 10 we detail the data inputs and outputs of the individual showcases. In Sec. 11 we collect information on the *platforms* (intended as web-based databases or services) and in Sec. 12 the main file formats related to the showcases. Finally, we draw our Conclusions in Sec. 13 and, in Annex 1 – Elucidations and Annex 2 – Example of queries and additional requirements respectively, we give elucidations and examples of both queries and data consumer requirements. Public - Page 5 of 54 - ¹ https://dome40.eu/dome-40-showcases ## 2. Showcase #1. Chemical kinetics Knowledge Graph (KG)– marine, air quality Showcase #1 is developed by CMCL and addresses air quality in relation to ship trajectories and weather conditions, involving a combination of observations and modelling. Below, in Table 1, we show the data that are produced, shared and consumed in Showcase #1, grouped into four main categories by "data type": Ship location in real time, Weather data, Topography data and Dispersion model. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 1: Data involved in Showcase #1 | 1 | Data type (high level) | Ship location in real time | Weather data | Topography
data | Dispersion model | |----|--|----------------------------|--------------|--|-------------------------| | 2 | Within the
showcases, is it
Input, Output or
both? (I, O, I/O) | I | I | I | 0 | | 3 | Probability of usage in the showcases (sure, high, low) | sure | Sure | sure | sure | | 4 | In which showcase(s)? | 1 | 1 | 1 | 1 | | 5 | We have access already | No | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | JSON | JSON | .HGT ("height") | Tab-separated text file | | 7 | Intermediate
structure within the
use case (File formats
we convert to etc) | RDF | RDF | GeoTIFF | RDF | | 8 | Folder structure
(yes/no + notes) | No | No | No (albeit more likely than the others on the left to be in a bundle with each filetype with a function, typically layers) | No | | 9 | File size (order of magnitude, including all types) | kb | kb | 80GB for entire
world | kb-Mb | | 10 | Open-source format? | yes | Yes |
Should be | | | 11 | File identifier | | | | | | 12 | Name of file (e.g., it contains relevant info/metadata) | | | Related to location coordinates | Location, timestamp | Public - Page 6 of 54 - | 13 | Changes in time
(NA=not applicable) | Hourly (our use) | Hourly (our use) | No | NA | |----|--|--|---|--|---| | 14 | Binary, human | H | Н | В | Н | | 15 | readable? (B, H) Concrete example files (paths) | Stored internally in | Stored internally in | Stored internally in | Stored internally in | | 16 | Data type in more detail: keywords | DOME4.0 latitude, longitude, ship ID, speed, size | temperature,
humidity,
precipitation
(mm/h) | DOME4.0
height profile | DOME4.0 Concentration profiles of hydrocarbons (XYZ coordinates + concentration) | | 17 | Is the structure documented? | Yes | Yes | Maybe (not user friendly) | No (own format) | | 18 | Link to documentation | [URL] ² | [URL] ³ | [URL] ⁴ | None | | 19 | How is the metadata given? | JSON keys | JSON keys | Not sure yet | column headers | | 20 | Does it follow a schema? | No | No | No | No | | 21 | Name/link of schema followed | | | | | | 22 | Where is the data now? (Data source) | Need
subscription
data, dummy
data available
locally, stored
in RDF | Queried from
API
(openweather),
then converted
to RDF | Hard drive,
downloaded
from source | Hard drive, file
location stored
in RDF | | 23 | On a platform?
(yes/no) | Yes | yes | yes | Not yet | | 24 | Platform name and acronym | Vessel finder,
AIS hub | OpenWeather | | | | 25 | Platform home URL | [URLs] ⁵ | openweatherm ap.org | | | | 26 | Data provider (name or type) | Vessel finder,
AIS hub | openweather | NASA | CMCL | | 27 | Data owner (name or type) | Same as provider | Same as provider | Same as provider | CMCL + client | | 28 | Data access rights (license, registration or fee needed) | fee | free (usage
dependent) | free | Probably: view data (not raw file) | ² https://www.vesselfinder.com/realtime-ais-data, https://www.aishub.net/api Public - Page 7 of 54 - ³ https://openweathermap.org/api ⁴ http://www.viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org3.htm ⁵ www.vesselfinder.com, https://www.aishub.net/ | 29 | Interface (connector, etc) | API (HTTP) | API (HTTP) | Webpage | Webpage, UI | |----|---|---|---|--|---| | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | Yes | Yes | No | Yes | | 31 | Name+acronyms of the ontology(ies) | OntoShip | OntoStation | N/A | | | 32 | Documentation on the ontologies (paper URL) | | | | | | 33 | URLs of the ontologies | [URL] ⁶ | [URL] ⁷ | N/A | N/A | | 34 | Standards (ISO-like,
or "de facto") used in
showcase in relation
to these data | none | none | none | none | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | long/lat points,
Bounding
Boxes/GeoJSO
N
Applicable
Coordinate
Reference
System - CRS
(e.g.,
EPSG:4326) | long/lat points,
Bounding
Boxes/GeoJSO
N
Applicable CRS
(e.g.,
EPSG:4326) | Likely to have associated geospatial metadata. ==> long/lat points, Bounding Boxes/GeoJSO N Applicable CRS (e.g., EPSG:4326) | long/lat points,
Bounding
Boxes/GeoJSO
N
Applicable CRS
(e.g.,
EPSG:4326) | | 36 | Notes | Gets coordinates of ships within a coordinate box. Raw data from JSON; within the use case, converted to RDF with own (CMCL) Ontology for Ships | | Downloaded all files, that are named according to coordinates | Data produced "on-demand" | | 37 | Specific libraries and/or tools required to read data | | | GDAL ⁸ | | | 38 | What we use to read it | Python script,
Java script | Java | | | ⁶ https://github.com/cambridge- cares/TheWorldAvatar/blob/main/JPS_Ontology/ontoship/OntoShip.owl cares/TheWorldAvatar/blob/main/JPS_Ontology/ontology/ontostation/OntoStation.owl Public - Page 8 of 54 - ⁷ https://github.com/cambridge- ⁸ https://gdal.org/ Public - Page **9** of **54** - # 3. Showcase #2. Light weight construction – fibre reinforced plastics Showcase #2 is developed by Fraunhofer IWM and BOSCH and addresses fibre-reinforced plastics in a combination of experiments and modelling. Below, in Table 2, we show the data that are produced and consumed in Showcase #2, grouped into six main categories by "data type": Experimental Creep data, Numerical Creep data, Material cards, Finite Elements (FE) simulation results and Experimental data at product level. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 2: Data involved in Showcase #2 | 1 | Data type (high level) | Experiment
al Creep
data (at
level of
composite
recyclate
material
samples) | Numerical Creep data (microstruc ture + creep data for matrix recyclate material) | Material
card for
anisotropic
recyclate
material
(available
in Ansys) | Finite
Elements
(FE)
simulation
results | Experiment
al data at
product
level for
FE-results
validation | |---|---|--|---|---|--|--| | 2 | Within the
showcases, is it
Input, Output or
both? (I, O, I/O) | I/O | I/O | 0 | 0 | 0 | | 3 | Probability of usage in the showcases (sure, high, low) | sure | sure/high | sure | sure | sure/high | | 4 | In which showcase(s)? | 2 | 2 | 2 | 2 | 2 | | 5 | We have access already | No | No | No | no | No | | 6 | Structure (File format(s) etc) | Excel or
ascii | Excel or
ascii | ascii | Calibrated material parameters: ascii Glass Fiber (GF)-orientation: .cof, .elem CAD-Model of product: .STEP FE-Model: .cdb | Ascii | | 7 | Intermediate structure within the use case (File | csv or xlsx | csv or xlsx | ASCII | ASCII | csv or xlsx | Public - Page **10** of **54** - | | formats we convert | | | | | | |----|---|---|--|---|--|---| | 8 | to etc) Folder structure (yes/no + notes) | no | no | no | no | No | | 9 | File size (order of magnitude, including all types) | 1 GB
(300MB x 32
measureme
nts) | 0.5 GB | <1KB | 0.5-2TB | 1GB | | 10 | Open-source format? | Depends | Office
License | Ansys ⁹ license Excel license IWM-internal calibration software (SW) for anisotropic materials | Excel
license
Converse,
calibration
SW for
anisotropic
materials
Ansys
license | Zwick-SW
Shaker/Vibr
ation-SW | | 11 | File identifier | No | No | different | different | Different | | 12 | Name of file (e.g., it contains relevant info/metadata) | Could contain specimen #, test conditions | Could contain material name, environment al conditions, math. Settings | Could contain material name, environment al conditions, math. | Could contain product name, environment al conditions, math. | Could contain product name, environment al conditions, math. Settings | | 13 | Changes in time (NA=not applicable) | No | yes, can be extended by additional computation s | yes,
depending
on the
choice of
material
card type | yes, depending on PhD- student capacity as well as on availability of required experimenta I data | yes, depending on PhD- student capacity as well as on availability of required experimenta I data | | 14 | Binary, human readable? (B, H) | Н | Н | Н | Н | Н | | 15 | Concrete example files (paths) | Stored internally in DOME 4.0 | | | Stored internally in DOME 4.0 | | Public - Page 11 of 54 - ⁹ In particular, Ansys Mechanical finite element analysis program is used. | 40 | Data tima in mana | 0 | F | Natarial | | Tasta of | |----|------------------------------------|---|---|---
--|---| | 16 | Data type in more detail: keywords | Creep curves, creep strain vs time, rapture time, rapture strain | For composite material: Creep curves, creep strain vs time, rapture time, rapture strain | Material card available in Ansys calibrated using IWM- internal SW for Mapping in Converse with Hill- potentials from Converse (which will be created by Bosch based on experimenta I data) | - injection simulation for product> GF- orientation - FE-model build-up - Mapping of Material Card in Converse -Write out the APDL-File with anisotropic material data for Ansys | - Tests of clamping forces in the plastic part - Vibration test | | 17 | Is the structure documented? | No for ascii | in some cases yes, in other cases not, structure might be different | manual of Converse can be received from PartGmbH after the registration | yes | in some cases yes, in other cases not, structure might be different | | 18 | Link to documentation | | | | | | | 19 | How is the metadata given? | Column/row headers | | 20 | Does it follow a schema? | No, but standard concepts: DIN EN ISO 899-1 - 2 directions (0°, 90°); - 4 temperature s (Tmin/Tmax and 2 x around the Tg) - 2 loads (%of_UTS); - 2 Repetitions; | No, but standard concepts: '-%, dimensions, orientation of GF (Glass Fiber) - Creep material data for matrix based on experimenta I data - The cell-size depends on specific properties of the final composite material | No (see
notes for
workflow-
related info) | No (see
notes for
workflow-
related info) | Bosch- internal, depends on target of experiment on product level | Public - Page **12** of **54** - | 21 | Name/link of schema followed | N/A | N/A | N/A | N/A | N/A | |----|---|-----------------------------|-----------------------------|------------------------------|-------------------------------|-------------------------------| | 22 | Where is the data now? (Data source) | Local
machines at
IWM | Local
machines at
IWM | Local
machines at
IWM | local
machines at
Bosch | local
machines at
Bosch | | 23 | On a platform?
(yes/no) | No | No | No | No | No | | 26 | Data provider (name or type) | IWM | IWM | IWM | Bosch | Bosch | | 27 | Data owner (name or type) | IWM | IWM | IWM / Bosch | Bosch | Bosch | | 28 | Data access rights (license, registration or fee needed) | Confidential | Confidential | Confidential | Confidential | Confidential | | 29 | Interface (connector, etc) | N/A | N/A | N/A | N/A | N/A | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | No | No | No | No | | 34 | Standards (ISO-like,
or "de facto") used
in showcase in
relation to these data | not used | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | Column/row
headers | Column/row
headers | material
name/acron
ym | material
name/acron
ym | Column/row
headers | | 37 | Specific libraries and/or tools required to read data | Excel
license | Excel
license | Excel
license | Ansys
license | Excel
license | | 38 | What we use to read it | Excel
license | Excel
license | Excel
license | Ansys
license | Excel
license | Public - Page 13 of 54 - ### 4. Showcase #3. Polymeric additives for coatings: anticorrosion Showcase #3 is developed by Fraunhofer (FHG) IFAM and SIEMENS (SISW), and addresses anti-corrosion coatings, in a combination of different publicly available data sources, experiments and Machine Learning (ML) modelling. Below, in Table 3 and Table 4 we show the data that are produced and consumed in Showcase #3, grouped into nine (five in the first table, four in the second) main categories by "data type": Chemical Identifiers, Training data, Hansen Solubility Parameter, Chemical information, Toxicology information, Corrosion data, Spectroscopic data, and Material Safety Data Sheet (MSDS). To avoid repetitions, data concerning the ML modelling that are relevant to multiple showcases will be shown only once, when Showcase #9 is addressed (see Section 11). For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 3: Data involved in Showcase #3 (first set) | 1 | Data type (high
level) | Chemical
Identifiers -
SMILES
string | Model -
Training
Data | Hansen
Solubility
Parameter
(HSP) | Chemical
information
, e.g. GHS
(Globally
Harmonize
d System)
Classificati
on | Toxicology
Information | |---|---|---|-----------------------------|--|--|---------------------------| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I | I | I/O | 0 | 0 | | 3 | Probability of usage in the showcases (sure, high, low) | high | high | high | high | high | | 4 | In which showcase(s)? | 3 | 3 | 3 | 3 | 3 | | 5 | We have access already | Yes | Yes | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | ASCII-string | csv | csv | json | json | | 7 | Intermediate
structure within the
use case (File
formats we convert
to etc) | | | | | | | 8 | Folder structure (yes/no + notes) | No | No | No | No | No | | 9 | File size (order of magnitude, including all types) | kB | МВ | few MB | kB | kB | Public - Page 14 of 54 - | 10 | Open-source format? | Yes | Yes | Yes | Yes | Yes | |----|---|---|--|---|---|-----------------------| | 11 | File identifier | NA | CSV | csv | NA | NA | | 12 | Name of file (e.g., it contains relevant info/metadata) | NA | custom | custom | NA | NA | | 13 | Changes in time (NA=not applicable) | No | NA | No | NA | NA | | 14 | Binary, human readable? (B, H) | Н | Н | Н | Н | Н | | 15 | Concrete example files (paths) | CC(=O)OC1
=CC=CC=C
1C(=O)O | [URL] ¹⁰ | Stored internally in DOME 4.0 | [URL] ¹¹ | [URL] ¹² | | 16 | Data type in more detail: keywords | chemical
identifier | Data which
is needed to
train the
model | data from HSP experiments (output case) / HSP data used for models (input case) | GHS hazard
statement -
code and
phrase | Predicted
toxicity | | 17 | Is the structure documented? | NA | No | custom | Yes | Yes | | 18 | Link to documentation | [URL] ¹³ | | | [URL] ¹⁴ | [URL] ¹⁵ | | 19 | How is the metadata given? | NA | column
header | column
header | NA | NA | | 20 | Does it follow a schema? | | | | | | | 21 | Name/link of schema followed | | | | | | | 22 | Where is the data now? (Data source) | user input
either as list
or ASCII-file | public | local | public
database | public
service | | 23 | On a platform?
(yes/no) | No | Yes | No | Yes | Yes | | 24 | Platform name and acronym | | ACS.org | | Pubchem | ProTox-II | | 25 | Platform home URL | | [URL] ¹⁶ | | [URL] ¹⁷ | [URL] ¹⁸ | ¹⁰ https://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt Public - Page **15** of **54** - ¹¹ https://pubchem.ncbi.nlm.nih.gov/compound/240#section=Safety-and-Hazards ¹² https://tox-new.charite.de/protox_II/index.php?site=faq#API ¹³ https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system ¹⁴ https://en.wikipedia.org/wiki/GHS_hazard_statements ¹⁵ https://tox-new.charite.de/protox II/index.php?site=fag#API ¹⁶ https://pubs.acs.org/ ¹⁷ https://pubchem.ncbi.nlm.nih.gov/ ¹⁸ https://tox-new.charite.de/protox_II/ | 26 | Data provider (name or type) | | public | IFAM | Pubchem | Charite
University of
Medicine | |----|---|------------|--|---------------------------------------|--|--| | 27 | Data owner (name or type) | | public | IFAM | public | public | | 28 | Data access rights (license, registration or fee needed) | | | confidential | Free | Free | | 29 | Interface (connector, etc) | GUI or API | GUI | | REST API | REST API | | 30 | Are ontologies
already used in the
showcase in relation
to these data?
(Yes/No) | No | | No | would be possible | No | | 31 | Name+acronyms of the ontology(ies) | | | | PubChemR
DF | | | 32 | Documentation on
the ontologies
(paper URL) | | | | [URL] ¹⁹ | | | 33 | URLs of the ontologies | | | | [URL] ²⁰ | | | 34 | Standards (ISO-like,
or "de facto") used
in showcase in
relation to these
data | | | | | | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | NA | chemical
identifier,
physico-
chemical
property(s) | chemical
identifier,
HSP values | chemical
identifier,
GHS hazard
statement | chemical
identifier,
parts of the
toxicity data | Public - Page **16** of **54** - ¹⁹ https://jcheminf.biomedcentral.com/articles/10.1186/s13321-015-0084-4 $^{^{20} \ \}underline{https://pubchemdocs.ncbi.nlm.nih.gov/rdf}$ Table 4: Data involved in Showcase #3 (second set) | 1 | Data type (high level) | Corrosion
data (Filiform,
NSST-neutral
salt spray
test) | Spectroscopi
c data (e.g. X-
ray
photoelectron
spectroscopy
) | Chemical
and
Physical
Properties
(e.g.,
molecular
weight) | Material
Safety Data
Sheet (MSDS) | |----|---|--|--|--|---| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I | I | 0 | I | | 3 | Probability of usage in the showcases (sure, high, low) | medium | low | medium | low | | 4 | In which showcase(s)? | 3 | 3 | 3 | 3 | | 5 | We have access already | Yes | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | picture format
(jpg, png);
results of
corrosion
evaluation as
csv or xlsx | xlsx, csv | json | pdf | | 7 | Intermediate structure within the use case (File formats we convert to etc) | | | | | | 8 | Folder structure (yes/no + notes) | No | No | No | No | | 9 | File size (order of magnitude, including all types) | 10 MB per
picture; KB for
aggregated
data | few MB per file | kB | few MB | | 10 | Open-source format? | depends | Yes | Yes | depends | | 11 | File identifier | NA | xlsx/csv | NA | NA | | 12 | Name of file (e.g., it contains relevant information/metadata) | custom | custom | NA | custom | | 13 | Changes in time (NA=not applicable) | No | No | NA | NA | | 14 | Binary, human readable?
(B, H) | B (H for
aggregated
data) | Н | Н | В | | 15 | Concrete example files (paths) | Stored
internally in
DOME 4.0 | Stored internally in DOME 4.0 | [URL] ²¹ | Stored internally in DOME 4.0 | Public - Page **17** of **54** - ²¹ https://pubchem.ncbi.nlm.nih.gov/compound/2244#section=Chemical-and-Physical-Properties | 16 | Data type in more detail: keywords | image from
sample after
corrosion
experiment;
aggregated
data evaluate
the amount of
corrosion | data from
spectroscopic
experiment
e.g. chemical
composition of
a surface | key/value pair | MSDS sheets
for
chemicals/mat
erials | |----|---|---|--|------------------------------|---| | 17 | Is the structure documented? Link to documentation | No | No | NA | NA | | 10 | Link to documentation | | | | | | 19 | How is the metadata given? | column header
for aggregated
data | column header | NA | | | 20 | Does it follow a schema? | | | | | | 21 | Name/link of schema followed | | | | | | 22 | Where is the data now? (Data source) | local | local | public service /
database | local | | 23 | On a platform? (yes/no) | No | No | Yes | No | | 24 | Platform name and acronym | | | PubChem | | | 25 | Platform home URL | | | [URL] ²² | | | 26 | Data provider (name or type) | IFAM | IFAM | Pubchem | depends | | 27 | Data owner (name or type) | IFAM | IFAM | public | depends | | 28 | Data access rights (license, registration or fee needed) | confidential | confidential | Free | | | 29 | Interface (connector, etc) | | | REST API | | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | No | would be possible | No | | 31 | Name+acronyms of the ontology(ies) | | | PubChemRDF | | | 32 | Documentation on the ontologies (paper URL) | | | [URL] ²³ | | | 33 | URLs of the ontologies | | | [URL] ²⁴ | | **Public** - Page 18 of 54 - https://pubchem.ncbi.nlm.nih.gov/ https://jcheminf.biomedcentral.com/articles/10.1186/s13321-015-0084-4 https://pubchemdocs.ncbi.nlm.nih.gov/rdf | 34 | Standards (ISO-like, or
"de facto") used in
showcase in relation to
these data | | | | | |----|---|--|--|--|------------------------| | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | few meta data
(experiment,
material) | few meta data
(experiment,
material) | chemical
identifier,
physico-
chemical
property(s) | chemical
identifier | Public - Page **19** of **54** - #### 5. Showcase #4. Structural adhesives: Fatigue behaviour Showcase #4 is developed by Fraunhofer (FHG) IFAM and SIEMENS (SISW), and concerns structural properties of joints, in a combination of experiments and ML modelling. Below, in Table 5 we show the data that are produced and consumed in Showcase #4, grouped into three main categories by "data type": Adhesive and substrate properties, Joint properties, and Fatigue data. As described earlier, the data concerning the ML modelling will be presented for Showcase #9 (see Section 11) to avoid repetition. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 5: Data involved in Showcase #4 | 1 | Data type (high level) | Adhesive and substrate properties | Joint properties | Fatigue data | |----|---|--|--|---| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I/O | I/O | I/O | | 3 | Probability of usage in the showcases (sure, high, low) | Sure | sure | sure | | 4 | In which showcase(s)? | 4 | 4 | 4 | | 5 | We have access already | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | .XLSX (Excel) | .XLSX (Excel) | .XLSX (Excel) | | 7 | Intermediate structure within the use case (File formats we convert to etc) | CSV | CSV | CSV | | 8 | Folder structure (yes/no + notes) | No | No | No | | 9 | File size (order of magnitude, including all types) | 100 kB | 100 kB | 100 kB | | 10 | Open-source format? | No | No | No | | 11 | File identifier | | | | | 12 | Name of file (e.g., it contains relevant information/metadata) | Not completely consistent, but related to materials and sample | Not completely consistent, but related to materials and sample | Not completely
consistent, but
related to materials
and sample | | 13 | Changes in time (NA=not applicable) | NA | NA | NA | | 14 | Binary, human readable? (B, H) | Н | Н | Н | | 15 | Concrete example files (paths) | Stored internally in DOME 4.0 | | | Public - Page **20** of **54** - | 16 | Data type in more detail: keywords | Commercial Name, Data Sheet Information (e.g. tensile strength, tensile modulus, glass Transition temperature, lap shear strength) | Geometry (type - e.g., lap shear, butt- and parameters) and materials (substrate + adhesive), properties | Sample lifetime (i.e., number of cycles till a crack forms or other criteria is satisfied) | |----|---|--|--|--| | 17 | Is the structure documented? | No | No | No | | 18 | Link to documentation | N/A | N/A | N/A | | 19 | How is the metadata given? | column headers | column headers | column headers | | 20 | Does it follow a schema? | Not, but common variables in the field | Not, but common variables in the field | Not, but common variables in the field | | 21 | Name/link of schema followed | | | | | 22 | Where is the data now? (Data source) | Commercial data
Sheets | Experimental, from publications and reports (external and internal to Fraunhofer) | Experimental data (publications in .pdf, or reports from projects → Mainly human extraction, from images or tables). Output from ML too. | | 23 | On a platform? (yes/no) | No | no | no | | 26 | Data provider (name or type) | Adhesive supplier
or Fraunhofer | Fraunhofer | Fraunhofer | | 27 | Data owner (name or type) | Fraunhofer | Fraunhofer | Fraunhofer | | 28 | Data access rights
(license, registration or fee
needed) | So far not open,
fee needed in the
future (for non-
publicly funded
projects) | So far not open,
fee needed in the
future (for non-
publicly funded
projects) | So far not open,
fee needed in the
future (for non-
publicly funded
projects) | | 29 | Interface (connector, etc) | none | none | none | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | No | No | | 34 | Standards (ISO-like, or "de facto") used in showcase in relation to these data | | | | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | | | | Public - Page **21** of **54** - | 36 | Notes | Note: .pdfs are on- | Note: Some | Excel tables from | |----|-------|---------------------|----------------------|-------------------| | | | line, need to be | samples do follow | experiments | | | | accessed and | standards, e.g. | | | | | processed) | ASTM D1002 (it | | | | | | depends on the | | | | | | application, e.g. | | | | | | railways, aircraft). | | | | | | NOT in our data. | | | | | | Note: .pdfs are on- | | | | | | line (so can be | | | | | | platforms), but | | | | | | need to be | | | | | | accessed and | | | | | | processed | | Public - Page **22** of **54** - ## 6. Showcase #5. Production equipment tools and service catalogues (metals, plastics, high-tech) Showcase #5 is developed by
INTRA and concerns the connection to and data sharing aspects with MARKET4.0 and other digital marketplaces, in the context of equipment and services for manufacturing. Below, in Table 6 we show the data that are produced and consumed in Showcase #5, grouped into four main categories by "data type": Equipment/Service information from MARKET4.0 catalogue, Information on DOME 4.0 platform tools, Product catalogue of material marketplace and International Data Spaces (IDS) equipment data. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 6: Data involved in Showcase #5 | 1 | Data type (high level) | Equipment/servi
ce information
from
MARKET4.0
catalogue | Information
on DOME 4.0
platform tools | Product
catalogue of
material
marketplace | IDS
Equipment
data | |----|---|--|--|--|--------------------------| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I/O | I/O | I/O | 0 | | 3 | Probability of usage in
the showcases (sure,
high, low) | sure | high | high | High | | 4 | In which showcase(s)? | 5 | 5, maybe 6 | 5, maybe 2 | 5 | | 5 | We have access already | Yes | No | No | No | | 6 | Structure (File format(s) etc) | JSON | JSON,
preferably | JSON,
preferably | JSON | | 7 | Intermediate structure within the use case (File formats we convert to etc) | N/A | | | No | | 8 | Folder structure
(yes/no + notes) | Data is organized
based on API
methods (i.e.
each method
retrieves a subset
of the data). | | | No | | 9 | File size (order of magnitude, including all types) | In total around 500KB. Comes in pages so page size will limit the data size produced. | N/A | N/A | A few MBs at most. | | 10 | Open-source format? | Yes | Yes,
preferably | Yes, preferably | Yes | Public - Page 23 of 54 - | | File identifier | Each catalogue | | | I | |----|--|---|---|---|---| | 11 | | entry has a
unique id. The id
is integer. | N/A | N/A | Each machine
has a unique
id. | | 12 | Name of file (e.g., it contains relevant information/metadata) | N/A | | | N/A | | 13 | Changes in time (NA=not applicable) | Depends on the suppliers. | | | Depends on the suppliers. | | 14 | Binary, human readable? (B, H) | н | N/A | N/A | н | | 15 | Concrete example files (paths) | [URL] ²⁵ and
[URL] ²⁶ | | | Requires IDS infrastructure. | | 16 | Data type in more detail: keywords | Production equipment/servic e descriptions for MARKET4.0 catalogue items coming from different suppliers. | Description of tools MARKET4.0 users can access over DOME 4.0. Endpoint information to forward users. | Catalogue
description of
material
marketplace. | Machine properties e.g. material names processed, processing capabilities, etc. | | 17 | Is the structure documented? | No | | | Yes | | 18 | Link to documentation | N/A | | | Documentatio
n available
internally for
DOME4.0
development
purposes | | 19 | How is the metadata given? | JSON property names | | | JSON property names | | 20 | Does it follow a schema? | Yes, MARKET4.0 internal schema | | | Yes,
MARKET4.0
internal
schema | | 21 | Name/link of schema followed | N/A | | | N/A | **Public** - Page 24 of 54 - http://platform.market40.eu/search/offerings?key=&page=0&size=12 http://platform.market40.eu/search/offerings?key=prima&page=0&size=12 | 22 | Where is the data
now? (Data source) | MARKET4.0
portal | DOME 4.0 infrastructure | DOME 4.0 infrastructure or material marketplace infrastructure | Data is available over an IDS connection. The data is stored on data provider infrastructure. | |----|---|--|---|--|---| | 23 | On a platform?
(yes/no) | yes | | | yes | | 24 | Platform name and acronym | MARKET4.0 | | | IDS | | 25 | Platform home URL | [URL] ²⁷ | | N/A | | | 26 | Data provider (name or type) | Various
MARKET4.0
partners. | | | MARKET4.0 suppliers | | 27 | Data owner (name or type) | MARKET4.0 | | | MARKET4.0 suppliers | | 28 | Data access rights
(license, registration
or fee needed) | Free | | | Free for those that have a valid IDS certificate | | 29 | Interface (connector, etc) | GUI, API | API, preferably | API, preferably | IDS API | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | Not yet -
Ontologies are
being
developed (in
WP3) | | No | | 34 | Standards (ISO-like, or
"de facto") used in
showcase in relation
to these data | not used | | | not used | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | Basic metadata e.g. machine name, manufacturer name, materials processed if present. | | | Basic metadata e.g. machine name, manufacturer name, materials processed if present. | Public - Page **25** of **54** - ²⁷ http://platform.market40.eu/index.html # 7. Showcase #6. Turnkey services & custom workflows integrating simulations and data Showcase #6 is developed by EPFL and addresses molecular simulations. Below, in Table 7 we show the data that are produced and consumed in Showcase #6, grouped into three main categories by "data type": Atomic structure, Simulation Settings and AiiDA Export data. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 7: Data involved in Showcase #6 | 1 | Data type (high level) | Atomic structure | Simulation
Settings | AiiDA export | |----|---|--|--|--| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I/O | I | I/O | | 3 | Probability of usage in the showcases (sure, high, low) | Sure | Sure | high | | 4 | In which showcase(s)? | 6 | 6 | 6 | | 5 | We have access already | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | .CIF, .XYZ, .aiida | JSON, .aiida | .aiida | | 7 | Intermediate structure within the use case (File formats we convert to etc) | .tar.gz | .tar.gz | .tar.gz | | 8 | Folder structure (yes/no + notes) | Only the .aiida files
have an internal
structure, details
here: [URL] ²⁸ | Only the .aiida files have an internal structure, details here | Only the .aiida files have an internal structure, details here | | 9 | File size (order of magnitude, including all types) | kB-MB | kB-MB | MB-GBs | | 10 | Open-source format? | Yes | Yes | Yes | | 11 | File identifier | Yes (UUID) | Yes (UUID) | Yes (UUID) | | 12 | Name of file (e.g., it contains relevant information/metadata) | Can be the UUID but no strict convention | | | | 13 | Changes in time (NA=not applicable) | No | No | No | | 14 | Binary, human readable? (B, H) | В, Н | В, Н | В | ²⁸ https://aiida.readthedocs.io/projects/aiida-core/en/latest/internals/data_storage.html Public - Page **26** of **54** - | 15 | Concrete example files (paths) | Stored internally in DOME 4.0 | Stored internally in DOME 4.0 | Stored internally in DOME 4.0 | |----|---|---|---|--| | 16 | Data type in more detail:
keywords | atomic coordinates
and species | typically, a dictionary of key- value pairs containing settings for a calculation | export file
containing an AiiDA
provenance graph
(including all
results and
calculations) | | 17 | Is the structure documented? | Yes | Yes | Yes | | 18 | Link to documentation | [URL] ²⁹ | [URL] ³⁰ | [URL] ³¹ | | 19 | How is the metadata given? | None for XYZ,
column headers for
CIF | key-value pairs | Included in the export as provenance graph attributes | | 20 | Does it follow a schema? | No | Some do | No | | 21 | Name/link of schema followed | | e.g., [URL] ³² | | | 22 | Where is the data now?
(Data source) | Can come from
various sources:
clients HDD,
OPTIMADE API,
MaterialsCloud, etc | Comes from the client | Can be: supplied
by client or
downloaded from
materialscloud.org | | 23 | On a platform? (yes/no) | yes | No | Yes | | 24 | Platform name and acronym | MaterialsCloud | | MaterialsCloud | | 25 | Platform home URL | www.materialsclou
d.org | | www.materialsclou
d.org | | 26 | Data provider (name or type) | Various (including EPFL) | The client | The client or materialscloud.org (various authors) | | 27 | Data owner (name or type) | Various (typically
the person who
created it) | The client | The author | Public - Page **27** of **54** - ²⁹ https://www.iucr.org/resources/cif/documentation/cifguide https://en.wikipedia.org/wiki/XYZ_file_format ³⁰
https://aiida.readthedocs.io/projects/aiida-core/en/v1.6.3/topics/data_types.html#topics-data-types-corebase-iterable ³¹ https://aiida.readthedocs.io/projects/aiidacore/en/latest/howto/share_data.html?highlight=create%20archive ³² https://aiida.readthedocs.io/projects/aiida-core/en/v1.6.3/topics/data_types.html#topics-data-types-core-base-iterable | 28 | Data access rights
(license, registration or fee
needed) | Various (many free - Creative Commons, many commercial, e.g. ICSD ³³) | | Free and open
(typically) | |----|---|--|--|--| | 29 | Interface (connector, etc) | OPTIMADE
RestAPI | Interactively supplied | Export file or
RESTAPI | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | No | No | | 34 | Standards (ISO-like, or "de facto") used in showcase in relation to these data | OPTIMADE | | | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | Metadata (e.g. the chemical composition of the atomic structure, the volume, perhaps symmetry information, but not atomic coordinates) | Basic metadata
(creation date,
modification date,
creator, etc) | Basic metadata
(creation date,
modification date,
creator, etc) | | 37 | Specific libraries and/or tools required to read data | Many python tools,
e.g. AiiDA, ASE | | AiiDA | | 38 | What we use to read it | AiiDA python
library | | | Public - Page **28** of **54** - $^{^{33} \, \}underline{\text{https://www.fiz-karlsruhe.de/en/produkte-und-dienstleistungen/inorganic-crystal-structure-database-icsd}$ #### 8. Showcase #7. Formulated consumer products Showcase #7 is developed by UKRI and combines experiments and modelling to address formulated consumer goods, typically in the fluid phase. Below, in Table 8 we show the data that are produced and consumed in Showcase #7, grouped into two main categories by "data type": Chemical and Physical properties and Molecular simulation (input) data. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 8: Data involved in Showcase #7 | 1 | Data type (high level) | Chemical and Physical properties | Molecular simulation (input) data | |----|--|--|---| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I | I/O | | 3 | Probability of usage in the showcases (sure, high, low) | sure | high | | 4 | In which showcase(s)? | 7 | 7 | | 5 | We have access already | Yes | Yes | | 6 | Structure (File format(s) etc) | GUI: Various download options available, including .XLSX and .PDF. JSON from the REST API. | Software specific. E.g.,
for DL_MESO_DPD ³⁴ ,
input files are:
CONTROL, FIELD,
CONFIG (optional) | | 7 | Intermediate structure within the use case (File formats we convert to etc) | | | | 8 | Folder structure (yes/no + notes) | | no (Typically, each simulation is run in a separate folder) | | 9 | File size (order of magnitude, including all types) | 10 kB | <kb (control="" and<br="">FIELD); CONFIG
depends on simulation
size (about 100kB per
1000 particles)</kb> | | 10 | Open-source format? | No | Yes | | 11 | File identifier | | N/A | | 12 | Name of file (e.g., it contains relevant information/metadata, is a unique identifier) | Compound name (for .PDF), Chemeo-generated code (for .XLSX) | File names need to be as expected by software | | 13 | Changes in time (NA=not applicable) | Generally, no. But it could, if source changes (see Notes) | NA | | 14 | Binary, human readable? (B, H) | Н | Н | ³⁴ https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx Public - Page **29** of **54** - | 15 | Concrete example files (paths) | Stored internally in DOME 4.0 | | |----|---|--|---| | 16 | Data type in more detail: keywords | Compound chemical formula, SMILES, CAS number, IUPAC INCHI, alternative names, properties (e.g., critical temperature) | Simulation parameters for dissipative particle dynamics, DPD (both model and numerical settings), e.g.: population of species, force field parameters, boundary conditions, initial simulation state. | | 17 | Is the structure documented? | | Yes | | 18 | Link to documentation | | DL_MESO User
Manual | | 19 | How is the metadata given? | Row header (for .XLSX) | Keywords, own format | | 20 | Does it follow a schema? | No, but includes widely used notations such as SMILES, CAS number, IUPAC INCHI ³⁵ | No | | 21 | Name/link of schema followed | N/A | N/A | | 22 | Where is the data now? (Data source) | On Chemeo platform | local machines at UKRI | | 23 | On a platform? (yes/no) | Yes | no | | 24 | Platform name and acronym | Chemeo | N/A | | 25 | Platform home URL | https://www.chemeo.co
m/ | N/A | | 26 | Data provider (name or type) | Ceondo | UKRI or modeller | | 27 | Data owner (name or type) | Ceondo GmBH and original sources (NIST, etc) | UKRI or modeller | | 28 | Data access rights (license, registration or fee needed) | Free | depends on system | | 29 | Interface (connector, etc) | GUI, REST API | N/A | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | Not yet, but could be used | | 31 | Name+acronyms of the ontology(ies) | | VIMMP Ontologies | | 32 | Documentation on the ontologies (paper URL) | | [URL] ³⁶ | | 33 | URLs of the ontologies | | [URL] ³⁷ | ³⁵ https://www.inchi-trust.org/ **Public** - Page 30 of 54 - https://doi.org/10.1007/978-3-030-68597-3 https://gitlab.com/vimmp-semantics/vimmp-ontologies | 34 | Standards (ISO-like, or "de facto") used in showcase in relation to these data | | | |----|--|--|--| | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | Metadata to identify the compound (name and synonyms, identifiers), data source | | | 36 | Notes | "Note: Cheméo is only indexing the data, follow the source links to retrieve the latest data." Note 2: amount of information varies with compounds | Metadata to be attached to identify the material to which the model applies (could be given as text within the input files, not regulated) | | 37 | Specific libraries and/or tools required to read data | | DL_MESO_DPD and associated utilities | | 38 | What we use to read it | | DL_MESO_DPD and associated utilities | Public - Page **31** of **54** - ### 9. Showcase #8. Semantic Analytics of Manufacturing Assets Showcase #8 is developed by BOSCH and addresses manufacturing. Below, in Table 9 we show the data that are produced and consumed in Showcase #8, grouped into four main categories by "data type": Welding raw data, Welding Knowledge Graph (KG) data, ML Model data, ML Model prediction results. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 9: Data involved in Showcase #8 | 1 | Data type (high level) | Welding raw
data | Welding KG
data | ML Model
data | ML Model prediction results | |----|---|--|--------------------------|-----------------------------|-----------------------------| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | 1 | I/O | 0 | 0 | | 3 | Probability of usage in the showcases (sure, high, low) | Sure | Sure | Sure | Sure | | 4 | In which showcase(s)? | 8 | 8 | 8 | 8 | | 5 | We have access already | Yes | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | csv | ttl | py
json | Csv, json | | 7 | Intermediate
structure within
the use case
(File formats we
convert to etc) | | | | | | 8 | Folder structure
(yes/no + notes) | Single feature
csv table
Folder of time
series csv
table | No | No | No | | 9 | File size (order of magnitude, including all types) | Few MB | Few MB | NA | Few MB | | 10 | Open-source format? | Yes | Yes | Yes | Yes | | 11 | File identifier | The primary key column of the single feature table contains all identifiers, | Project name as filename | Project name
as filename | Project name as filename | Public - Page 32 of 54 - | | | which will be
used for the | | | | |----|--------------------------------|-------------------------------|-------------------|-----------------|-------------------| | | | filenames of | | | | | | | time series | | | | | | | tables | | | | | 12 | Name of file | user | user determined | user | user determined | | | (e.g., it contains | determined | | determined | | | | relevant | | | | | | | info/metadata) | | | | | | 3 | Changes in time | Depends on | Depends on | Depends on | Depends on | | | (NA=not | availability of | availability of | availability of | availability of | | |
applicable) | additional | additional | additional | additional | | | | training data | training data | training data | training data | | 14 | Binary, human readable? (B, H) | Н | Н | В | Н | | 15 | Concrete | Stored | Stored internally | Stored | Stored internally | | | example files | internally in | in DOME 4.0 | internally in | in DOME 4.0 | | | (paths) | DOME 4.0 | | DOME 4.0 | | | 16 | Data type in | Welding raw | Structured | Machine | Predicted quality | | | more detail: | datasets that | welding data | learning model | indicators, edge | | | keywords | contain | constructed | information | or node | | | | welding | from welding | | prediction and | | | | control setting, | raw data with | | classification | | | | parameters, | domain | | | | | | sensor | ontologies as | | | | | | measurements | the knowledge | | | | | | and quality | base and KG | | | | | | indicators | schema | | | | 17 | Is the structure | Yes | Yes | Yes | Yes | | | documented? | | | | | | 18 | Link to | NA | NA | NA | NA | | | documentation | | | | | | 19 | How is the | Column | KG schema | ReadMe file | Column headers | | | metadata given? | headers | | | and filenames | | 20 | Does it follow a | Relational | KG schema | No | No | | | schema? | data schema | | | | | 21 | Name/link of schema followed | NA | NA | NA | NA | | 22 | Where is the | Bosch internal | Bosch internal | Bosch internal | Bosch internal | | 22 | | device | device | device | device | | | data now? (Data source) | device | device | device | device | | 23 | On a platform? | No | No | No | No | | 23 | (yes/no) | NO | INO | INO | INO | | 26 | Data provider | Bosch internal | Bosch internal | Bosch internal | Bosch internal | | | (name or type) | | | | | | | | | | | | | 27 | Data owner | Bosch internal | Bosch internal | Bosch internal | Bosch internal | | | (name or type) | | | | | | | | | | | | Public - Page **33** of **54** - | 28 | Data access rights (license, registration or fee needed) | Closed | Closed | Closed | Closed | |----|--|---|--|----------------------|----------------------| | 30 | Are ontologies
already used in
the showcase in
relation to these
data? (Yes/No) | No | Yes | Yes | Yes | | 31 | Name+acronyms of the ontology(ies) | NA | RSW ontology
Welding core
ontology | ML ontology | ML ontology | | 32 | Documentation on the ontologies (paper URL) | NA | [URL] ³⁸ | URL | <u>URL</u> | | 33 | URLs of the ontologies | NA | NA | NA | NA | | 34 | Standards (ISO-
like, or "de
facto") used in
showcase in
relation to these
data | ISO
14327:2004(E) | ISO
14327:2004(E) | ISO
14327:2004(E) | ISO
14327:2004(E) | | 35 | Subset/aspect of
the data DOME
needs to be able
to 'understand'
(text) | Sample
welding
machine
dataset | Sample KG | NA | Sample results | | 37 | Specific libraries and/or tools required to read data | NA | NA | NA | NA | | 38 | What we use to read it | Excel | Txt, Protege | Txt, json reader | Txt, image reader | Public - Page **34** of **54** - ³⁸ https://www.sciencedirect.com/science/article/pii/S1570826821000391 ### 10. Showcase #9. Virtual development of composite materials Showcase #9 is developed by SIEMENS (SISW) and addresses virtual development of composite materials which, for example, is relevant for the automotive industry. Below, in Table 10 we show the data that are produced and consumed in Showcase #9, grouped into four main categories by "data type". Please note that, as already mentioned, these data types will also be relevant to showcases #3 and #4. For clarifications on the row headers, cf. Annex 1 – Elucidations. Table 10: Data involved in Showcase #9 (and also in showcases #3 and #4) | 1 | Data type (high level) | ML model -
Training Data | ML Model -
Definition and
Evaluation | ML Model -
Design Space | ML Model -
Prediction
and results | |----|---|--|--|---|---| | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | I | I/O | I | I/O | | 3 | Probability of usage in the showcases (sure, high, low) | sure | sure | sure | sure | | 4 | In which showcase(s)? | (3),4,9 | (3),4,9 | (3),4,9 | (3),4,9 | | 5 | We have access already | Yes | Yes | Yes | Yes | | 6 | Structure (File format(s) etc) | CSV | .py | .py, CSV | .py, CSV,
JSON | | 7 | Intermediate structure within the use case (File formats we convert to etc) | | | | | | 8 | Folder structure (yes/no + notes) | No | No | No | No | | 9 | File size (order of magnitude, including all types) | few 100 kB | NA | NA | few MB | | 10 | Open-source format? | Yes | Yes | Yes | Yes | | 11 | File identifier | Typically, one CSV file condensing all labelled input data | | | Export per
project in CSV
file with
projectname
as filename | | 12 | Name of file (e.g., it contains relevant information/metadata) | user
determined | user
determined | user
determined | user
determined | | 13 | Changes in time
(NA=not applicable) | Depends on availability of additional training data | Depends on
availability of
additional
training data | Depends on availability of additional training data | Depends on availability of additional training data | Public - Page **35** of **54** - | 14 | Binary, human
readable? (B, H) | Н | Н | Н | Н | |----|---------------------------------------|--|--|---|--| | 15 | Concrete example files (paths) | Stored
internally in
DOME 4.0 | | Stored internally in DOME 4.0 | Stored internally in DOME 4.0 | | 16 | Data type in more detail:
keywords | Data which is needed to train the ML-model; it contains information on material property, composition, testing conditions, | Assign the available training data to either input or output for the ML. Define the structure of the ML-model. | Define the material design space of interest | Predict material candidates based on the combination of the ML-model, design space and desirable target properties | | 17 | Is the structure documented? | Yes | Yes | Yes | Yes | | 18 | Link to documentation | Raw_data ³⁹ | Predictor ⁴⁰ | Design_Space | Prediction ⁴² | | 19 | How is the metadata given? | column
headers | UI - interactive
graph,
graphical
models | UI - input fields | column
headers | | 20 | Does it follow a schema? | Citrine | Citrine | Citrine | Citrine | | 21 | Name/link of schema followed | Raw_data | <u>Predictor</u> | Design_Space | Prediction | | 22 | Where is the data now? (Data source) | Raw data
comes from
the End-user
and is
uploaded (via
API or GUI) to
Citrine
informatics,
cloud tool | Direct input by
the user -
evaluation
report is on the
Citrine
platform | Direct input by
the user | Direct input by
the user and
on the Citrine
platform
(results) | | 23 | On a platform? (yes/no) | yes | yes | yes | yes | | 24 | Platform name and acronym | Citrine
Informatics
(tool provider,
data sink) | Citrine
Informatics
(tool provider,
data sink) | Citrine
Informatics
(tool provider,
data sink) | Citrine
Informatics
(tool provider,
data sink) | | 25 | Platform home URL | Citrine Platform (citrine- platform.com) | $^{^{39} \, \}underline{\text{https://citrineinformatics.github.io/citrine-python/formulations}} \, \, \underline{\text{example.html\#example-raw-data}}$ Public - Page **36** of **54** - ⁴⁰ https://citrineinformatics.github.io/citrine-python/formulations_example.html#training-a-predictor https://citrineinformatics.github.io/citrine-python/formulations example.html#defining-a-design-space https://citrineinformatics.github.io/citrine-python/formulations_example.html#proposing-new-formulation-candidates | 26 | Data provider (name or type) | Fraunhofer;
SABIC | SISW | SISW | SISW | |----|---|-----------------------------|-------------------------------|-------------------------------|-----------------------------| | 27 | Data owner (name or type) | Fraunhofer;
SABIC | SISW,
Fraunhofer;
SABIC | SISW;
Fraunhofer;
SABIC | Fraunhofer;
SABIC | | 28 | Data access rights (license, registration or fee needed) | Registration;
fee needed | Registration;
fee needed | Registration;
fee needed | Registration;
fee needed | | 29 | Interface (connector, etc) | GUI, API | GUI, API | GUI, API | GUI, API | | 30 | Are ontologies already used in the showcase in relation to these data? (Yes/No) | No | No | No | No | | 34 | Standards (ISO-like, or
"de facto") used in
showcase in relation to
these data | NA | NA | NA | NA | | 35 | Subset/aspect of the data DOME needs to be able to 'understand' (text) | All input data | | | All output data | Public - Page **37** of **54** - ### 11. Platforms entering the showcases In Table 11 and Table 12 below, we summarise the properties of the platforms that enter the showcases. Please note that two of the columns (OPTIMADE and IDS ecosystem), rather than to individual platforms, refer to emerging standards/initiatives that aim to support interoperability. In particular, we
distinguish data providers in three categories (cf. Row 11), based on the different workflow they will require for integration within DOME 4.0: - Data (D): i.e., data that is there/available, one sends a request and gets the data - **Data On Demand (DOD)**: i.e., data to be computed (one sends a request, gets a receipt, then the data possibly after some time) - Interactive App (IA): i.e., one logs in and "does" something on the platform Table 11: Platforms involved in the showcases (first set) | 1 | Platform name and acronym | Vessel
Finder | AIS Hub | Elevation
data | Weather | PubChem | |---|---|--|------------------------------------|---|--|---| | 2 | Platform home URL | www.vesself
inder.com | | http://www.v
iewfinderpa
noramas.or
g/Coverage
%20map%2
Oviewfinder
panoramas
org3.htm | api.openwe
athermap.or
g | https://pubc
hem.ncbi.nl
m.nih.gov/ | | 3 | Platform query URL
(i.e., query end-
point) | Need
purchase to
know | [query
URL] ⁴³ | N/A | [query
URL] ⁴⁴ | [query
URL] ⁴⁵ | | 4 | Platform
documentation (via
URL or similar) | https://www.
vesselfinder
.com/realtim
e-ais-data | https://www.
aishub.net/a
pi | http://viewfin
derpanoram
as.org/dem3
.html | https://open
weathermap
.org/api | https://pubc
hemdocs.nc
bi.nlm.nih.g
ov/about | | 5 | Scope | Ship
location | Ship
location | Topography | Weather | open
chemistry
database at
the National
Institutes of
Health (NIH) | | 6 | Interface | REST | REST | GUI | REST | Web or
REST API | ⁴³ Public - Page **38** of **54** - $[\]underline{\text{https://data.aishub.net/ws.php?username=A\&format=B\&output=C\&compress=D\&latmin=E\&latmax=F\&lonmin=G\&lonmax=H\&mmsi=I\&imo=J\&interval=K}$ ⁴⁴ https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={API key} ⁴⁵ https://pubchem.ncbi.nlm.nih.gov/rest/pug_view/data/compound/1234/JSON | 7 | Does the API specification comply with a "standard" (yes/no + name + URL) | | Yes | No API | Yes | Yes | |----|--|-----|-----|--------|-----------------|------| | 8 | How to access
(registration or fee
needed) | Fee | Fee | Free | Free for
now | Free | | 9 | Enters in Showcase(s) # | 1 | 1 | 1 | 1 | 3 | | 10 | Type (P=provider,
C=consumer,
P/C=both) | Р | Р | P | Р | Р | | 11 | Provider of: data (D),
Data on Demand
(DOD), Interactive
App (IA) | DOD | DOD | IA | DOD | D | Public - Page **39** of **54** - Table 12: Platforms involved in the showcases (second set) | 1 | Platform name
and acronym | Materials
Cloud | The Open Database s Integratio n for Materials Design (OPTIMA DE) | Citrine
Informati
cs | MARKET
4.0 | Chemeo
(Cheméo) | IDS
ecosyste
m | |---|--|--|---|---|---|---|--| | 2 | Platform home
URL | www.mate
rialscloud.
org | | Note: You
get a
specific
URL
AFTER
registering | http://platf
orm.mark
et40.eu/in
dex.html | https://ww
w.chemeo
.com/ | Peer to peer ecosyste m no centralize d URL is available | | 3 | Platform query
URL (i.e., query
end-point) | Multiple,
e.g.:
[query
URL] ⁴⁶ | e.g.,
[query
URL] ⁴⁷
and [query
URL] ⁴⁸ | | [query URL] ⁴⁹ Other API methods are available as well (e.g., querying the results by category id) | [query
URL] ⁵⁰ | Requires
IDS
infrastruct
ure. | | 4 | Platform
documentation
(via URL or
similar) | https://ww
w.material
scloud.org
/explore/c
onnect | https://gith
ub.com/M
aterials-
Consortia/
OPTIMAD
E/blob/dev
elop/optim
ade.rst | Citrine Python client document ation | http://platf
orm.mark
et40.eu/in
dex.html#!
/help | https://ww
w.chemeo
.com/note
s/about/ | https://inte
rnationald
ataspaces
.org/ | | 5 | Scope | Computati
onal
materials
data | Atomic
structure
data | Tools for
Material
informatic
s (e.g., ML
models) | Productio
n
equipment
and
service
marketpla
ce | Chemical
and
physical
data for
the
process
industry | Private
supplier
data | Public - Page **40** of **54** - ⁴⁶ https://www.materialscloud.org/mcloud/api/v2/discover/mc3d/compounds https://oqmd.org/optimade/ https://www.crystallography.net/cod/optimade/ ⁴⁹ http://platform.market40.eu/search/offerings?key=&page=0&size=12 ⁵⁰ https://www.chemeo.com/api/v1/ | 6 | Interface | REST API | REST API | GUI or
API | GUI, Web
API | GUI and
REST API | IDS API | |----|---|-------------------------------------|--|---------------------------------------|--|---------------------|--------------------------------------| | 7 | Does the API specification comply with a "standard" (yes/no + name + URL) | Yes -
OPTIMAD
E | Yes -
OPTIMAD
E | | No | No | No | | 8 | How to access (registration or fee needed) | Open: no
registratio
n or fee | Typically
free and
no
registratio
n | At a cost,
registratio
n needed | Access to
the
catalogue
is open | Free | Valid IDS
certificate
required | | 9 | Enters in Showcase(s) # | 6 | 6 | (3),4,9 | 5 | 7 | 5 | | 10 | Type
(P=provider,
C=consumer,
P/C=both) | P/C | Р | P/C | P/C | Р | Р | | 11 | Provider of: data
(D), data on
demand (DOD),
interactive app
(IA) | D, IA | D | DOD, IA | D | D | D | | 12 | Note | | OPTIMAD E is the standard, but there are many OPTIMAD E data providers, a list can be found at [URL] ⁵¹ | Secure
platform
ISO
27001 | | | | Public - Page **41** of **54** - $^{^{51}\,\}underline{https:/\!/www.optimade.org/providers\text{-}dashboard/}$ ### 12. File formats entering the showcases In Table 13 below, we summarize the file formats entering the DOME 4.0 showcases, together with basic information (references, domain) and relevance for our project. Whenever available, we indicate the DOI assigned to the format within FAIRsharing⁵², a community-driven project to support FAIR principles. Note that file formats that are specifically connected to a given software (e.g., .cdb for Ansys) are not included in the table. Table 13: File formats involved in the showcases | File format
name | Extensio
n | Domain
(N/A if
generic) | Format
docume
ntation
(via
URL) | Format
FAIRsha
ring DOI | Level of
underst
anding
DOME4.
0 needs
to have
(0=know
,1=load,
2=parse
) | Priority
(high,
medium,
low) | Enters
in
showca
se(s) # | |---|---------------|-------------------------------|---|-----------------------------------|--|---------------------------------------|-----------------------------------| | AiiDA export file | .aiida | workflow
s | [URL] ⁵³ | | 0 | low | 6 | | Crystallograp
hic
Information
Framework
(CIF) - Model
and format | .CIF | atomistic | [URL] ⁵⁴ | [DOI] ⁵⁵ | 0 | medium | 6 | | Comma-
Separated
Values (CSV) | .CSV | N/A | [URL] ⁵⁶ | Awaiting
DOI
assignm
ent | 0 | high | 3, 4, 9 | | Geographic
Tagged Image
File Format
(GeoTIFF) | .geotiff | spatial | [URL] ⁵⁷ | [DOI] ⁵⁸ | 0 | low | 1 | | Height | .HGT | topograp
hy | [URL] ⁵⁹ | | 0 | low | 1 | ⁵² https://fairsharing.org/; https://www.nature.com/articles/s41587-019-0080-8 Public - Page **42** of **54** - ⁵³ https://aiida.readthedocs.io/projects/aiida-core/en/v2.0.0b1/internals/storage/sqlite_zip.html ⁵⁴ https://www.iucr.org/resources/cif/spec/version1.1 https://doi.org/10.25504/FAIRsharing.zr52g5 ⁵⁶ https://datatracker.ietf.org/doc/html/rfc4180 ⁵⁷ https://docs.ogc.org/is/19-008r4/19-008r4.html ⁵⁸ https://doi.org/10.25504/FAIRsharing.cdd9bf ⁵⁹ https://gdal.org/drivers/raster/srtmhgt.html | Joint Photographic Experts Group Format (JPEG) | .jpg | N/A | [URL] ⁶⁰ | [DOI] ⁶¹ | | | 3 | |---|--------------------|---------------|---------------------|-----------------------------------|-------|--------|---------| | JavaScript
Object
Notation | .JSON | N/A | [URL] ⁶² | [DOI] ⁶³ | 0,1,2 | medium | 5 | | Portable document format (PDF) | .PDF | N/A | [URL] ⁶⁴ | See
[URL] ⁶⁵ | | | 4 | | Resource
Description
Framework
(RDF) | .RDF | N/A | [URL] ⁶⁶ | [DOI] ⁶⁷ | | | 1 | | Standard for
the Exchange
of Product
(STEP) Data | .STEP | CAD
design | [URL] ⁶⁸ | | | | 2 | | Gzip-
compressed
archive | .tar.gz or
.tgz | N/A | [URL] ⁶⁹ | | | | 6 | | Terse RDF
Triple
Language
(Turtle, TTL) | .ttl | N/A | [URL] ⁷⁰ | Awaiting
DOI
assignm
ent | | | 8 | | Text | .txt | N/A | [URL] ⁷¹ | | 1 | | 1 | | Microsoft
Excel format | .XLSX | N/A
| [URL] ⁷² | | | | 2, 3, 4 | | XYZ atomistic data | .XYZ | atomistic | [URL] ⁷³ | | 0 | medium | 6 | Public - Page 43 of 54 - ⁶⁰ https://www.fileformat.info/info/mimetype/image/jpeg/index.htm ⁶¹ https://doi.org/10.25504/FAIRsharing.nggj0j ⁶² https://www.json.org/json-en.html ⁶³ http://dx.doi.org/10.17487/RFC8259 ⁶⁴ https://www.iana.org/assignments/media-types/application/pdf ⁶⁵ https://doi.org/10.25504/FAIRsharing.0ade3e ⁶⁶ https://www.iana.org/assignments/media-types/application/rdf+xml ⁶⁷ https://doi.org/10.25504/FAIRsharing.p77ph9 ⁶⁸ https://en.wikipedia.org/wiki/ISO 10303-21 ⁶⁹ https://www.gnu.org/software/gzip/ ⁷⁰ http://www.w3.org/TR/turtle/ ⁷¹ https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics of HTTP/MIME types/Common types ⁷² https://www.iana.org/assignments/media-types/application/vnd.openxmlformats- officedocument.spreadsheetml.sheet ⁷³ https://en.wikipedia.org/wiki/XYZ_file_format As a general note on text-based files and data, we underline that the chosen *character set* (*charset*) is a delicate issue: we recommend using US-ASCII as a default or its superset UTF-8 (often, the character encoding can be chosen in software settings). Public - Page 44 of 54 - # 13. Conclusions / Next steps In this document we have collected information on the data to be handled within the nine DOME 4.0 showcases, providing a rich overview of the specific domains, file formats and platforms involved. This information has already and will continue to support the DOME 4.0 platform development. The project is still in its initial phase (M18 out of 48 months), so there might be some changes to aforementioned aspects of the showcases in the future, but we are confident that the bulk of the information provided in this document will remain relevant. Content-wise, we have collected diverse data types (about 30), encompassing experiments, observations and simulations (e.g., creep experimental data, weather data, simulation settings, ML model design space, etc). Concerning file formats: about 20 have been identified, with both general ones (.XLSX/Excel, JSON, CSV) and domain-specific ones (e.g., .XYZ for molecular simulations and .HGT for topography). Most formats are human readable, and metadata tend to be given as key/value pairs, row/column headers, or in the file name/ID tag. We note that few schemas are used, however concepts often belong to domain-specific "standards". We have identified topics and domain-specific keywords and pointed out those that will be most relevant for DOME 4.0. Whenever the use cases are already using ontologies or have identified relevant ones, references to those have been collected too. About 10 platforms (intended as web-based services) will enter the showcases, including both data and service providers; usually, they come with both GUI and API interfaces. While this document concludes the activities of Task 4.1, DOME 4.0 WP4 will continue working on the execution of the showcases, in close connection with the core technical WPs as well as the business model-focused WP7. Public - Page 45 of 54 - ## 14. Deviations from Annex 1 There are no deviations from Annex 1. Public - Page **46** of **54** - # 15. Acknowledgements The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review. #### Project partners: | # | Туре | Partner | Partner full name | |----|-------------------|---------|--| | 1 | SME | CMCL | Computational Modelling Cambridge Limited | | 2 | Research | FHG | Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung E.V. | | 3 | Research | INTRA | Intrasoft International SA | | 4 | University | UNIBO | Alma Mater Studiorum – Universita di Bologna | | 5 | University | EPFL | Ecole Polytechnique Federale de Lausanne | | 6 | Research | UKRI | United Kingdom Research and Innovation | | 7 | Large
Industry | SISW | Siemens Industry Software NV | | 8 | Large
Industry | BOSCH | Robert Bosch GmbH | | 9 | SME | UNR | Uniresearch B.V. | | 10 | Research | SINTEF | SINTEF AS | | 11 | SME | CNT | Cambridge Nanomaterials Technology LTD | | 12 | University | UCL | University College London | This document is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953163. It is the property of the DOME 4.0 consortium and do not necessarily reflect the views of the European Commission. Public - Page **47** of **54** - # 16. Table of Abbreviations | Abbreviation | Explanation | |--------------|--------------------------------------| | APDL | Ansys Parametric Design Language | | API | Application Programming Interface | | ASE | Atomic Simulation Environment | | CAD | Computer-Assisted Design | | CRS | Coordinate Reference System | | DOI | Digital Object Identifier | | DPD | Dissipative Particle Dynamics | | FE | Finite Elements | | GF | Glass Fiber | | GHS | Globally Harmonized System | | GUI | Graphical User Interface | | HDD | Hard Disk Drive | | HSP | Hansen Solubility Parameter | | ICSD | Inorganic Crystal Structure Database | | IDS | International Data Spaces | | KG | Knowledge Graph | | ML | Machine Learning | | MSDS | Material Safety Sata Sheet | | NSST | Neutral Salt Spray Test | | REST | REpresentational State Transfer | | SW | Software | | URL | Uniform Resource Locator | | UUID | Universally Unique Identifier | | XPS | X-ray Photoelectron Spectroscopy | Public - Page **48** of **54** - #### **Annex 1 – Elucidations** In Table 14 below, we briefly explain what is expected for each row in the tables used for the individual showcases. Most categories are self-explanatory. Table 14: Elucidations on the entries of the data tables used in Sections 2-10 | # | Row name | Explanation, additional information, examples | |----|---|---| | | | | | 1 | Data type (high level) | Data by content at a mid/high level. It can involve multiple file formats | | 2 | Within the showcases, is it Input, Output or both? (I, O, I/O) | Input/Output with respect to the showcase workflow | | 3 | Probability of usage in the showcases (sure, high, low) | Gives an estimate of usage probability | | 4 | In which showcase(s)? | Points to the DOME 4.0 showcase(s) number | | 5 | We have access already | Yes/No. "We" is intended as "the DOME 4.0 consortium" | | 6 | Structure (File format(s) etc) | | | 7 | Intermediate structure within the use case (File formats we convert to etc) | | | 8 | Folder structure (yes/no + notes) | E.g., specifies if files are organized in a folder with a certain structure that we need to preserve to be able to process the data with a specific tool. | | 9 | File size (order of magnitude, including all types) | | | 10 | Open-source format? | Yes/No. Specifies if the format can be freely used and implemented by anyone. | | 11 | File identifier | Gives information on the eventual file identifier (e.g., used within the data source) | | 12 | Name of file (e.g., it contains relevant information/metadata) | Specifies if the file name contains relevant information, metadata, identifiers. | | 3 | Changes in time (NA=not applicable) | Yes/No/NA. Allows to flag data that is expected to vary in time. | | 14 | Binary, human readable? (B, H) | B/H. | | 15 | Concrete example files (paths) | Points to example files available publicly (URL) or internally | | 16 | Data type in more detail: keywords | Specifies the data content in further detail, expanding Row #1 | | 17 | Is the structure documented? | Yes/No - Specifies if the data structure is documented | | 18 | Link to documentation | | | 19 | How is the metadata given? | For example: as column/row headers, key/value pairs. | | 20 | Does it follow a schema? | Yes/No - Specifies if data follows a data schema | Public - Page **49** of **54** - | 21 | Name/link of schema followed | Points to the schema followed | |----|--|--| | 22 | Where is the data now? (Data | Points to the current location of the data, which may be | | | source) | different once DOME 4.0 is finalized (e.g., data could be | | | | currently on client local machines) | | 23 | On a platform? (yes/no) | Yes/No. Specifies if data is already available via a web-based | | 24 | Platform name and acronym | platform. (EXTRA – only shown if not empty) | | 24 | Flationii name and actorym | (EXTIXA – only shown in not empty) | | 25 | Platform home URL | (EXTRA – only shown if not empty) | | 26 | Data provider (name or type) | | | 27 | Data owner (name or type) | | | 28 | Data access rights | | | | (license, registration or fee needed) | | | 29 | Interface (connector, etc) | (EXTRA – only shown if not empty) | | | | Interface of the platform | | 30 | Are ontologies already used in | Yes/No | | | the showcase in relation to these data? (Yes/No) | | | 31 | Name+acronyms of the | (EXTRA – only shown if not empty) | | | ontology(ies) | Points to the ontology(ies) name and acronym | | 32 | Documentation on the | (EXTRA – only shown if not empty) | | | ontologies (paper URL) | Points to the ontology(ies) documentation | | 33 | URLs of the ontologies | (EXTRA – only shown if not empty) | | 34 | Standards (ISO-like, or "de | Points to the ontology(ies) source files | | 34 | facto") used in showcase in | Points to the "standards" (in a broad sense) used | | | relation to these data | | | 35 | Subset/aspect of the data | Points out the data aspects (group at mid/high level) that | | | DOME needs to be able to | DOME 4.0 needs to understand, as opposed to those that | | | 'understand' (text) | can be opaque for DOME and are left to the user to deal with
| | 26 | Notes | (EVEDA and a shown if not amount) | | 36 | Notes | (EXTRA – only shown if not empty) | | 37 | Specific libraries and/or tools | (EXTRA – only shown if not empty) | | | required to read data | | | 38 | What we use to read it | (EXTRA – only shown if not empty) | | | | | Public - Page **50** of **54** - # Annex 2 – Example of queries and additional requirements In Table 15 below, we show some examples of queries (as text or machine formula), while in Table 16 we list additional requirements from the data consumers. *Table 15: Example queries* | Show case # | Data topic | User type | Query text | Query
(machine
formula) | Trigger (e.g.,
triggers a
calculation) | |-------------|--------------------------------|---|---|--|--| | 1 | Air quality | City council | Create sensor at latitude-
longitude | Usually an HTTP POST with JSON data. For geospatial queries [URL] ⁷⁴ | Yes | | 2 | lightweight
construction | DOME client (e.g. company looking for material properties for specific application) | Find materials with creep rates lower than xxx/s and elastic modulus exceeding YYY MPa and a specific weight below ZZZ kg/m3 | | | | 3 | Corrosion protection additives | DOME client | Give me a predicted performance of a set of possible structures | | | | 4 | Structural adhesive | DOME client | Show me
adhesives with
fatigue strength
higher than X
MPa | | | | 5 | MARKET4.0 catalogue | DOME client | Return all equipment in the MARKET4.0 catalogue in pages. The parameter key is used to search by name of equipment, supplier, etc. When the key values is empty | http://platform.m
arket40.eu/searc
h/offerings?key=
&page=0&size=
12 | No | ⁷⁴ https://newcastle.urbanobservatory.ac.uk/api_docs/doc/sensors-json/ Public - Page **51** of **54** - | | | | all equipment are returned. | | | |---|-------------------------------|--|---|--|------| | 6 | Atomic structure | DOME client
(e.g. company
developing
materials) | Return all
materials with
Cobalt plus
Lithium plus O2 | http://www.cryst
allography.net/c
od/result?formul
a=Co+Li+O2 | Both | | 6 | CO2 adsorption energy | DOME client
(e.g. company
developing
materials) | Show me the CO2 adsorption energy from AiiDA calculation 4fc8801e-1000-429c-bc89-f8ece8d99c00 | https://www.mat
erialscloud.org/e
xplore/curated-
cofs/details/4fc8
801e-1000-
429c-bc89-
f8ece8d99c00?n
odeType=NODE | No | | 6 | Electronic
structure | | Show me the
band structure
for AiiDA node
87e21964-8186-
43f3-9efc-
ea0d0086f3ba | https://www.mat
erialscloud.org/e
xplore/2dstructur
es/details/87e21
964-8186-43f3-
9efc-
ea0d0086f3ba?
nodeType=NOD
E | No | | 7 | Chemical compounds | Dome client (e.g., user looking for standard identifier for compounds) | Look for CTAB (GUI); In the REST API, one can look selectively for the SMILES formula and IUPAC INCHI of CTAB (Cetrimonium Bromide) | https://www.che
meo.com/search
?q=ctab | No | | 8 | Manufacturing machine/control | Welding experts | Return the number of welding programs and welding operations for all welding machines | See [example query] ⁷⁵ | No | | 9 | Composite materials | DOME client
(e.g. material
consumer) | How can I select
the best material
for the Melt Flow
Index and with | | | ⁷⁵ SELECT ?wm (COUNT(distinct ?prog) AS ?CountProgram) COUNT(distinct ?op) AS ?CountOperation) WHERE { Public - Page **52** of **54** - [?]wm rdf:type rsw-kg:WeldingMachine . $[?]wm\ rsw-kg:hasWeldingProgram\ ?prog\ .$ $[?] op \ rsw-kg: performed By Machine \ ?wm \ . \ \}$ | | high mechanical | | |--|------------------|--| | | properties? i.e. | | | | Which material | | | | ingredient | | | | combination | | | | allows me to hit | | | | target material | | | | properties? | | Public - Page **53** of **54** - Table 16: Examples of additional requirements from data consumers | Data consumer (type or name, if it is a concrete data sink/platform) | Show
case # | Requirements from consumer on data structures (text) | Requirements
from consumer
on metadata
(text) | Any other requirements from consumer on data/metadata (text) | |--|----------------|---|--|--| | Data sink outside
DOME | 5 | The consumer understands the JSON format of the data. | The consumer understands the JSON format of the data. | The consumer has to have an IDS connector and a valid certificate to access the data peer to peer. | | AiiDALab | 6 | AiiDALab expects to get a URL pointing to an OPTIMADE endpoint specifying a particular atomic structure | None | Identification of user via an access token | | Welding experts | 8 | The consumers understand
the data schemata; or there
exists some mechanism that
ease the data access, e.g.,
query selection, form-based
query generation | None | The consumer has knowledge on the domain of the data. | | Data provided by the material supplier | 9,
(3,4) | .py script used to ingest the data on the Citrine platform | The consumer understands the provided data | | Public - Page **54** of **54** -