
   

 

This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 953163. It is the property of the DOME 4.0 consortium and do not necessarily reflect the 
views of the European Commission. 

 

Deliverable D5.5 – Standards and Best Practices Report 

Responsible Partner: SINTEF 2022-11-16 
Contributor(s): Bjørn Tore Løvfall (SINTEF), Kristine Wiik 

(SINTEF), Casper Welzel Andersen 
(SINTEF),Treesa Rose Joseph (SINTEF), Stijn 
Donders (SISW), Noel Vizcaino (UKRI)  

2022-11-16 

Reviewer(s): Kontantinos Sipsas (INTRA), Jesper Friis 
(SINTEF) 

2022-11-25 

Coordinator:  CMCL Innovations  2022-11-30 

Dissemination Level: Public 
Due Date: M24 

Submission Date: 30. Nov 2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Project Profile  
Programme Horizon 2020 

Call H2020-NMBP-TO-IND-2020-twostage 

Topic DT-NMBP-40-2020 
Creating an open marketplace for industrial data (RIA) 

Project number 953163 

Acronym DOME 4.0 

Title Digital Open Marketplace Ecosystem 4.0 

Start Date December 1st, 2020 

Duration 48 months 

 

 

 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 1 of 45 - 

Document History 

Version Date Author Remarks 

V0.1 19.10.2022 
Bjørn Tore Løvfall, Kristine Wiik, 

Casper Welzel Andersen (SINTEF) 
Initial structure and content. 

V0.2 07.11.2022 Stijn Donders (SISW) 
Added industrial relevance 

and comments 

V0.3 11.11.2022 
Treesa Rose Joseph, Kristine Wiik, 

Bjørn Tore Løvfall (SINTEF) 
Content for Sections 4-9 

added 

V0.4 14.11.2022 Noel Vizcaino (UKRI) Extended FAIR section 

V0.5 15.11.2022 Bjørn Tore Løvfall (SINTEF) 
Updated list of abbreviations, 

executive summary and 
lessons learnt 

V0.6 16.11.2022 
Bjørn Tore Løvfall, Casper Welzel 

Andersen (SINTEF) 

Update of section 3 and 
general cleanup of the 

document 

V0.7 25.11.2022 Kontantinos Sipsas (INTRA) Review 

V0.8 28.11.2022 Casper Welzel Andersen (SINTEF) 
General cleanup of the 

document 

V0.9 30.11.2022 Amit Bhave and Willem van Dorp 
Finalization, approval of final 

version 

 

 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 2 of 45 - 

Executive Summary 

The current deliverable (D5.5) is a report that summarizes the standards and best practices collected 

from the Industry Commons Cooperation work package in the DOME 4.0 project.  

It is clear that relying on standards and best practices is a way to make sure the burden on the data 

providers and consumers is as small as possible. In making the DOME 4.0 platform, we want to listen to 

the communities and reuse as much as possible from what is already created. By adhering to standards 

instead of creating new alternative solutions, and to listen to the best practices and try to follow them. 

For DOME 4.0 this relates to how data is documented and handled, but also to how the ecosystem is 

built and how it is used. This is a vast set of topics and in this report, we try to cover what we think is the 

most relevant for DOME 4.0. 

We try to cover in particular data documentation through ontologies/taxonomies/vocabularies in 

addition to the FAIR principles and the separation of data and metadata. We also cover software 

development and software tools and technologies, but limited to what we think is relevant for DOME 

4.0. 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 3 of 45 - 

Table of Contents 
Executive Summary ....................................................................................................................................... 2 

List of Figures ................................................................................................................................................ 4 

 Introduction .......................................................................................................................................... 6 

1.1 Industrial Challenge ...................................................................................................................... 6 

1.2 Objective ....................................................................................................................................... 6 

 Standardization and Data Documentation ........................................................................................... 7 

2.1 Top/Mid level Ontologies ............................................................................................................. 7 

2.2 Domain Ontologies ....................................................................................................................... 7 

2.3 Taxonomies/Vocabularies ............................................................................................................. 7 

 Best practices for connecting to data ................................................................................................... 8 

3.1 Separation of data and metadata ................................................................................................. 8 

3.2 FAIR ............................................................................................................................................... 9 

3.2.1 Work done by other projects and communities ................................................................... 9 

3.3 Data models ................................................................................................................................ 10 

3.4 Mappings..................................................................................................................................... 10 

3.5 Separation of concern ................................................................................................................. 11 

 Best practices for Software Development .......................................................................................... 12 

4.1 Agile development ...................................................................................................................... 12 

4.2 Microservices .............................................................................................................................. 12 

4.3 Source Control Management ...................................................................................................... 13 

4.4 Project Management Tool .......................................................................................................... 13 

4.5 Continuous Integration/Continuous Delivery (CI/CD) ................................................................ 13 

 Software .............................................................................................................................................. 14 

5.1 Identity and Access management ............................................................................................... 15 

5.2 Web Frameworks ........................................................................................................................ 16 

5.2.1 Web Servers ........................................................................................................................ 16 

5.2.2 Orchestration and Management ........................................................................................ 17 

5.2.3 Back-end Frameworks ......................................................................................................... 19 

5.2.4 Front-end Frameworks ....................................................................................................... 21 

5.3 Storage ........................................................................................................................................ 23 

5.3.1 Standard databases ............................................................................................................. 23 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 4 of 45 - 

5.3.2 Triplestore ........................................................................................................................... 24 

5.4 Interoperability Framework ........................................................................................................ 25 

5.5 Tools ............................................................................................................................................ 26 

 Technologies ....................................................................................................................................... 27 

6.1 Authentication and Authorization .............................................................................................. 27 

6.2 Communication interfaces .......................................................................................................... 28 

6.3 API Specification.......................................................................................................................... 29 

6.4 Persistence .................................................................................................................................. 30 

 Chemical Substance Identifiers ........................................................................................................... 31 

7.1 IUPAC Naming Rules ................................................................................................................... 31 

7.2 SMILES ......................................................................................................................................... 31 

7.3 CAS Registry Number .................................................................................................................. 31 

7.4 EC number ................................................................................................................................... 32 

7.5 InChI/InChIKey ............................................................................................................................ 32 

 Conclusions / Next steps ..................................................................................................................... 32 

 Lessons learnt and deviations from Annex 1 ...................................................................................... 33 

 References ...................................................................................................................................... 34 

 Acknowledgement .......................................................................................................................... 37 

 Table of Abbreviations .................................................................................................................... 38 

Annex 1 ....................................................................................................................................................... 40 

RDFS Data Exchange Vocabularies (RDFS-DEV) ...................................................................................... 40 

DCTERMS ............................................................................................................................................. 40 

DCAT .................................................................................................................................................... 40 

PROV-O ............................................................................................................................................... 42 

Annex 2 ....................................................................................................................................................... 43 

 

List of Figures 

Figure 1: Illustration of separation of concern ........................................................................................... 12 

Figure 2: Software components for DOME 4.0 platform development ..................................................... 15 

Figure 3: Required Technologies ................................................................................................................. 27 

Figure 4: The DCAT (shown is Version 3) schema relies on DCTERMS, FOAF, SKOS, etc. ........................... 41 

Figure 5: The three Starting Point classes and the properties that relate them. ....................................... 42 

 

file://///1A-SERVER/data/03-PM%20&%20Adm/H2020/DOME4.0-H2020-953163-CMCL-NMBP-2020/01-Project%20Management%20-%20DOME%204.0/06-Deliverables/D5.5/D5.5_Standards_and_Best_Practices_Reportv0.9.docx%23_Toc120703675


D5.5 – Standards and Best Practices  

 

[Public]  - Page 5 of 45 - 

Table 1 FAIR data criteria .............................................................................................................................. 9 

Table 2 Keycloack overview ........................................................................................................................ 15 

Table 3 ORY Network overview .................................................................................................................. 16 

Table 4 NGINX overview ............................................................................................................................. 16 

Table 5 Apache HTTP server overview ........................................................................................................ 17 

Table 6 Kubernetes overview ..................................................................................................................... 17 

Table 7 Docker overview ............................................................................................................................. 17 

Table 8 Ansible overview ............................................................................................................................ 18 

Table 9 Docker Compose overview ............................................................................................................. 18 

Table 10 Flask overivew .............................................................................................................................. 19 

Table 11 FastAPI overview .......................................................................................................................... 19 

Table 12 Django overview ........................................................................................................................... 20 

Table 13 PHP overview ............................................................................................................................... 20 

Table 14 AngularJS / Angular overview ...................................................................................................... 21 

Table 15 React overview ............................................................................................................................. 21 

Table 16 Node.js overview .......................................................................................................................... 22 

Table 17 Bootstrap overview ...................................................................................................................... 22 

Table 18 PostgreSQL overview.................................................................................................................... 23 

Table 19 MongoDB overview ...................................................................................................................... 23 

Table 20 Redis overview ............................................................................................................................. 23 

Table 21 AllegroGraph overview................................................................................................................. 24 

Table 22 Stardog overview ......................................................................................................................... 24 

Table 23 DLite (SOFT) overview .................................................................................................................. 25 

Table 24 CUDS/CUBA overview .................................................................................................................. 25 

Table 25 Cookiecutter overview ................................................................................................................. 26 

Table 26 Protégé overview ......................................................................................................................... 26 

Table 27 EMMOntoPy overview ................................................................................................................. 27 

Table 28 X.509 (certificate) overview ......................................................................................................... 28 

Table 29 OAuth2 overview.......................................................................................................................... 28 

Table 30 RESTful API overview .................................................................................................................... 28 

Table 31 GraphQL overview ........................................................................................................................ 29 

Table 32 OpenAPI overview ........................................................................................................................ 29 

Table 33 Triplestore overview .................................................................................................................... 30 

Table 34 "Standard" database (relational/NoSQL) overview ..................................................................... 30 

Table 35 Cache storage (key/value store) overview ................................................................................... 31 

 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 6 of 45 - 

 Introduction 

The purpose of this document is to collect all the standards and best practices that are encountered in 

the interaction and cooperation with other initiatives in other tasks in WP5, Industry Commons 

Cooperation. This will in turn be used as input to the technical tasks to ease their burden in planning and 

execution of their tasks. 

1.1 Industrial Challenge 
Already today, data providers and owners suffer from inefficiencies and tedious manual steps, required 

to populate material data fields in their databases, maintain/update this information, and correlate it 

with other sources. This underlines the need for efficient and user-friendly data population, which will 

also enable providing data services to consumers and users on the basis of secured and trusted data 

transactions. 

In today’s ever more digital world, such data population must adhere to established data governance 

practices. Accordingly, DOME 4.0 will adopt the FAIR Guiding Principles [1] for scientific data 

management and stewardship providing guidelines to improve the Findability, Accessibility, 

Interoperability, and Reuse of digital assets. This also includes guidelines for data provenance and 

sovereignty.  

In line with the objectives of Open Science and Open Innovation, the challenge is to make data FAIR 

through an effective common information system that allows in particular business-to-business data 

sharing and enables new or improved products, processes and services. Such a system should take the 

form of a user-friendly, state-of-the-art marketplace that is open to all providers and users of data to 

maximise the spill over of knowledge across all economic sectors. 

1.2 Objective 
It is not the objective of this report to give the solution to all the industrial challenges mentioned in the 

above section, but the objective is to collect standards and best practices to make the job easier for 

other tasks in the DOME 4.0 project to address the industrial challenge while making the DOME 4.0 

ecosystem. The results collected in this report has been continuously fed to the technical work packages 

to ensure as good a foundation as possible was available to make technical decisions.  

 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 7 of 45 - 

 Standardization and Data Documentation 

2.1 Top/Mid level Ontologies 
The OntoCommons project [2] aims at developing an Ontology Commons EcoSystem (OCES) [3] where 

they try to harmonize data documentation using ontologies and taxonomies. Enabling Findable, 

Accessible1, Interoperable, Reusable (FAIR) data, (see Section 3.2 for more information) and intra- and 

cross-domain interoperability. This fits with the vision of the DOME 4.0 project as DOME 4.0 aims to 

create a Digital Open Marketplace Ecosystem enabling sharing of business-to-business (B2B) data across 

markets. At the heart of this lies semantic interoperability, and a key enabler for semantic 

interoperability is ontologies.  

In DOME 4.0 we are making a semantic data exchange ontology and an ecosystem information model 

ontology. According to the landscape analysis [3] done by the OntoCommons project there are a handful 

of actively developed top level ontologies, with the most important being Basic Formal Ontology (BFO) 

[4], [5], Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [6] and Elementary 

Multiperspective Material Ontology (EMMO) [7]. EMMO has a strong focus on the material science 

domain, and has a strong holding within the European Materials Modelling Council (EMMC) [8] 

community, and it is then natural for DOME 4.0 to base its ontologies on EMMO. An important lesson 

learnt in OntoCommons is that it is better to map axioms from existing ontologies than to create new 

ones.  

 

2.2 Domain Ontologies 
There are a number of existing standardized ontologies that are relevant for the work in DOME 4.0. The 

W3C DCAT(2) [9] vocabulary is an OWL2 ontology. It includes elements from other external vocabularies 

particularly from The Dublin Core terms (DCTERMS) [10], Friend of a Friend (FOAF) [11] and the 

provenance ontology (PROV-O) [12]. These are all relevant for the semantic data exchange ontology, 

and has already been described in D3.1 [13, p. 1]. The description is not repeated here, but the text is 

also added to Annex 1 for convenience to the reader.  

There are other domain ontologies that are relevant for DOME 4.0, but they are not as standardized as 

the ones mentioned above. The OntoCommons project collected a list of relevant ontologies [14] as part 

of their landscape analysis [15, p. 2], [16, p. 3]  

2.3 Taxonomies/Vocabularies 
DOME 4.0 aims at being a Marketplace of Marketplaces. It is then very important to use a vocabulary 

that is as familiar to the targeted industrial end users as possible. Most notable are the European 

Science Vocabulary [17] and the Review of Materials Modelling (RoMM) [18].  

The European Science Vocabulary is based on CORDIS and is developed as a reference vocabulary. This 

will be relevant for categorising data and platforms connected to DOME 4.0. 

 
1 For accessibility ontologies plays a smaller role. It mostly depends on technical solutions, like retrievable data and 

metadata by identifiers and access to metadata even when the data is no longer available. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 8 of 45 - 

The Review of Materials Modelling is a book that aims at amongst other things define the vocabulary for 

materials modelling within the European materials modelling community. This vocabulary has been 

adopted and further refined by EMMO. 

 Best practices for connecting to data 

This section deals with the best practices for connecting data. This includes the Findable, Accessible, 

Interoperable and Reusable (FAIR) principles, but also how the data and metadata should be treated, 

and what could be done to help make the data more FAIR. 

3.1 Separation of data and metadata 
Data can be small and concise, big and specific, ordered or unstructured, but mostly it is all those things 

and more. To better understand what a datum or a set of data contains and represents, information 

about the data is useful. 

The description of the information about the data is called metadata and is essentially another piece of 

data [1] However, the metadata is usually well-structured, maybe even schematized and condensed in 

comparison to the data. Metadata should not contain any actual data values, but rather, describe what 

those values represent. For a simple table of data, the metadata can be a list of the table headers 

associated with a small description for each as well as other useful information, like unit, multiplicity or 

other. 

Since the point of separation between “actual” data values is an important one, this will be exemplified. 

Let’s assume that you have measured a Raman spectrum2 for a given material. What is the data and 

metadata? There are no clear rules, but it is easy to agree on the numbers representing the spectrum to 

be considered as “actual” data. What about the units along the wavelength and energy axis? Since they 

provide context to the data, it makes sense to consider them as metadata. What about the temperature 

the experiment was performed at? One could consider that as metadata. But considering the 

temperature value as another datum in the dataset, and its unit as metadata, will still respect the point 

that metadata should not contain any “actual” data values. 

When adding this contextual information, the metadata is describing the data, and by collecting sets of 

metadata together, it is possible to search for and handle the data that is useful for a given purpose 

more easily. 

To achieve this searchability there is a need of separation of metadata from the data it describes. Using 

the previous data table example, this is equivalent to creating a separate datum that lists and describes 

the table headers, which is kept separate from the data. 

Describing data with metadata proves to be extremely useful for the wide spectrum of challenging use 

cases that are targeted and used by global industry. The following sections explore usage and 

description of metadata, specifically naming them as data models. How they can be expanded upon for 

 
2 Raman Spectroscopy is a non-destructive chemical analysis technique, which provides detailed information about 
chemical structure, phase and polymorphy, crystallinity and molecular interactions. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 9 of 45 - 

sharing, achieving wider interoperability. Eventually resulting in fully semantic data models supporting a 

FAIR semantically- and data model-driven framework of data sharing. 

3.2 FAIR 
The FAIR Data Principles (Findable, Accessible, Interoperable, and Reusable) are a set of guiding 

principles proposed by a consortium of scientists from various organizations and companies to support 

the reusability of digital assets. They were published in 2016 and have since been adopted by research 

institutions worldwide [1], [19]. 

For data to be FAIR, the consortium defines the criteria in Table 1 taken from [1]. 

Table 1 FAIR data criteria 

Findable The data must be described with rich metadata, assigned a globally unique and 
persistent identifier, and registered or indexed in a searchable resource. 

Accessible The data and its metadata must be retrievable by their identifier using a 
standardized communications protocol which is open, free, and universally 
implementable, and which allows for an authentication and authorization procedure 
where necessary. Furthermore, the metadata must be accessible, even when the 
data is no longer available. 

Interoperable The data and metadata must use a formal, accessible, shared, and broadly applicable 
language for knowledge representation, use vocabularies that follow FAIR principles, 
and include qualified references to other data and metadata. 

Reusable The data and metadata must be richly described with a plurality of accurate and 
relevant attributes. In particular, they must be released with a clear and accessible 
data usage license, be associated with detailed provenance, and meet domain-
relevant community standards. 

International standards play a key role in making the data FAIR. The FAIR principles are broken down 

into several (technology independent) high-level concerns [20]. The consortium devised FAIR codes, 

which are listed with comments related to standards and the relevance for DOME 4.0 in Annex 2. 

DOME 4.0 will develop a FAIR Data Monitoring and Auditing Service, which will make the adherence of 

data provided by participants in the context of DOME 4.0 to FAIR principles directly measurable. 

Additionally, DOME 4.0 will promote FAIR data through provenance tracking. For this work, DOME 4.0 

will look to other projects and communities and try to build on what has already been achieved. For 

example, the F-UJI assessment tool interpretation of FAIR with corresponding codes. 

3.2.1 Work done by other projects and communities 
Of a particular importance are the outcomes of the Research Data Alliance (RDA) FAIR Data Maturity 

Model Working Group [23] that produced a set of FAIRness indicators using a regular RDA process for 

community engagement. This set of indicators underpins the actual software tools developed by the 

FAIRsFAIR [24] and EOSC-Synergy projects [25]. It is worth noting that both projects end in 2022, so in a 

way DOME 4.0 is taking over from them regarding making progress with the actual implementation of 

FAIR measurement tools. 

The most mature software tool originating in the mentioned projects is F-UJI Automated FAIR Data 

Assessment tool [21]. developed by FAIRsFAIR that implements most of the metrics developed by the 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 10 of 45 - 

mentioned RDA group. It should be kept in mind that RDA-developed metrics leave much room for their 

interpretation, and only by looking into the code one can really make sense of how a particular FAIR 

metric is interpreted. 

Another tool called FAIR Evaluator [26] was developed by EOSC-Synergy along the same lines based on 

the RDA metrics, but it seems to be less mature than F-UJI and perhaps not worth reusing. Having this 

said, EOSC-Synergy tried to move one step further and looked into developing another set of FAIR 

metrics devoted to assessment of not a dataset but an entire data repository. This can be a promising 

line of work conceptually, and to some extent practically, as we may want to evaluate certain 

repositories from which DOME 4.0 is fetching data and then just “trust” them, i.e., automatically assign 

“default” FAIR metrics to datasets originating from a certain repository. 

Furthermore, FAIRsharing.org [27] has developed the FAIRsharing FAIR Evaluation Services [28] that 

encompass various resources and guidelines to assess the FAIRness of digital assets. One of the most 

promising resources developed by FAIRsharing.org is the List of Maturity Indicators [29]. It contains 

some popular indicators and allows for registration of one's own FAIR maturity indicator. The newly 

registered indicator can then be referred to using a standard FAIRsharing citation mechanism including a 

DOI assigned to an indicator. This bears a good potential for defining FAIR metrics that reflect a specific 

notion of FAIRness well-fit with DOME 4.0 design and purposes, and further using these metrics in FAIR 

assessment tools and semantic assets such as ontologies. 

3.3 Data models 
A data model is an abstract model that provides a standardized method for defining and formatting data 

instances. Data models are a foundational element of software development and analytics. A data 

model is commonly made up of an identifier and some properties. These data model properties define 

the metadata for the “actual” data, the data model represents. The identifier is metadata for the data 

model. 

Different ecosystems have traditionally been developed independently. As a result, there is a lot of 

variation in the way data is represented by different ecosystems, with many different data models 

describing the same or similar concepts in various ways. This makes the process of achieving smooth 

interoperability between data, devices, and software tools a costly and complex challenge. 

A possible route towards solving this problem is that of ontologies and mappings. 

3.4 Mappings 
While data models represent data and ontologies represent the concepts, domain knowledge and the 

inherent semantics, a set of mappings is the tool to bind the two together. 

A mapping is a semantic definition of how a specific data model property corresponds or maps to an 

ontological concept. A set of mappings for all of a data model's properties constitutes a complete 

ontological mapping of the data model. Note, the target ontological concepts can exist in the same or 

separate ontologies. Indeed, a single data model property can have multiple mappings, however, in this 

case it would not be expected that these mappings are targeting concepts within the same ontology, but 

it is not generally disallowed. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 11 of 45 - 

When all properties of a data model are mapped to ontological concepts, the data model is said to be a 

fully semantic data model. A set of fully semantic data model properties is essential for semantically- 

and data model-driven interoperability. Note the difference between a fully semantic data model and a 

set of fully semantic data model properties. The main point being that while a single data model may 

not be fully semantic, if the desired data properties from the given data model comprises a set of fully 

semantic data model properties, it will facilitate fully semantic interoperability. Otherwise, it will fall 

back to non-semantic data model-driven interoperability. 

More than that, a set of mappings facilitates the properties of a single data model to be semantically 

described by several different ontologies simultaneously without issue (given the ontological concepts 

are not disjoint), facilitating data model reusability and easy semantical extendibility. 

For further reusability, a set of mappings should be stored once created, in a similar fashion to how data 

models are stored, to ensure the same reusability of mappings as is the case for data models. It should 

be noted that some mappings only make sense in a specific context and should only be available within 

that context. This is e.g., the case of a generic deep learning model whose input and output may be 

mapped to possible disjoint ontological concepts depending on the context the deep learning model is 

applied to. 

3.5 Separation of concern 
An advantage of splitting mappings and data models in separate entities is that mappings depend on 

both the data model and an ontology. A data model depends only on a data provider's knowledge about 

their data, while an ontology depends only on the domain knowledge of a domain expert, as well as 

ontology experts. Separating data model and ontology with mappings means independent 

development, and that purely data-driven interoperability frameworks and technologies can be 

developed and implemented independently of the ontology development. The semantics can then be 

added as a layer on top of this when the more time-consuming development of ontologies is finishing, 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 12 of 45 - 

but it is not a strict requirement. An illustration of this separation can be seen in Figure 1.

 

Figure 1: Illustration of separation of concern 

 Best practices for Software Development 

Current best practices for software development do not always align with a project that has a team that 

is spread over several locations and organizations and must be planned in total before the start of the 

project, as is the case for DOME 4.0. This by design then excludes some of the best practices that are 

meant for a well-oiled (small) software team located in the same location. We will in this section focus on 

best practices that are relevant for DOME 4.0 

4.1 Agile development 
Even though the description of action assumes a classic waterfall approach to development, there is 

enough flexibility to consider an agile approach. An agile approach is an iterative development 

methodology, with short-term development goals building toward the final product. This short-term 

development cycle takes feedback from the previous cycles to improve the quality of the final product. As 

DOME 4.0 has partners working on different features in parallel, a waterfall model in the long term might 

produce incompatible features that cannot be integrated or cannot work together, this can be prevented 

if an agile strategy is used i.e., using iterative steps and develop the platform incrementally, so before we 

exhaust the project resources, we can solve incompatibilities. Hence an agile approach with shorter 

development cycles will increase the quality of the platform with constant feedback, as well as improve 

the collaboration between partners.  

4.2 Microservices 
The DOME 4.0 platform consists of many integrated parts, as can be seen in Section 5. The development 

team is also spread over several organizations. Conway’s law states “Any organization that designs a 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 13 of 45 - 

system (defined broadly) will produce a design whose structure is a copy of the organization's 

communication structure” [30] This all means that it is best practice to break the development down into 

small pieces that can be developed as independently as possible. Microservices is an architectural style 

where the platform/ application is developed as a collection of small services, each service addressing a 

single feature. This enables different services to evolve at different rates and be updated without affecting 

the other services. DOME 4.0 has multiple partners in different locations working on different features, in 

different programming languages. If these are developed as separate services that constitute the platform 

i.e., creating different functionalities as microservices, then this will make it easier to integrate, maintain 

and debug the platform in the long-term evolution of the project. 

4.3 Source Control Management 
DOME 4.0 is to a large extent a software project and we will have multiple developers/partners 

contributing to the development process, and various features being developed over time. Hence it is 

important to store the history of changes, who made them, and when so we can revert or look back to 

previous versions and see how the project has evolved. This tracking is essential to maintain the integrity 

of the code base. Also, in case of any issues or bugs those errors can be figured out easily by comparing 

them to the last working version. And if required these errors can be reverted. Version control also helps 

developers collaborate on a project easily, as everyone has access to the previous versions, and they can 

work simultaneously on the same project from various locations. 

Some of the best practices to keep in mind are A) Writing good commit messages to understand what the 

changes are and why it was changed. B) Test before committing. C) Get the code reviewed before merging 

changes.  

The most recommended and popular version control tool is Git. Git is free and open source, and is 

supported by most providers offering infrastructure for code management. 

4.4 Project Management Tool 
The main function of a project management tool is to help plan, organize, manage tasks and estimate 

timelines. This is very important for a project where multiple people are involved and the tasks, 

milestones, and deadlines are spread across the years. As an initial planning tool, the Gantt chart was 

used. But when the development process starts, we want a tool that can track the progress of tasks and 

subtasks included in each milestone, hence as a standard, we can use a Kanban board that can visualize 

the work and progress and the people associated with different tasks. There are many digital Kanban 

boards available to choose from (for example GitHub projects and Jira Kanban boards). Popular providers 

of integrated tools for software development, like GitHub [31], GitLab [32] and Bitbucket [33] all have 

tools where the project management tool is connected to the source control management and the CI/CD. 

4.5 Continuous Integration/Continuous Delivery (CI/CD) 
This is the combination of continuous integration (CI) and continuous delivery or continuous deployment 

(CD). Continuous integration refers to how fast the developed features are integrated into the source 

code, and continuous deployment automatically deploys these new features to the production system. 

Lastly, continuous delivery means new versions of software can be released anytime the latest version is 

deployed. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 14 of 45 - 

This is very important for a project like DOME 4.0 as new deliverables and tasks can be added 

incrementally to the platform, and this enables all the partners and platform users to see how the platform 

is evolving.  Automated tests to all the repositories will ensure that coding standards are maintained by 

all developers and continuous deployment will allow partners to test and give feedback. 

 Software 

This section lists software relevant to DOME 4.0 in different tasks required for the implementation of the 

DOME 4.0 platform. An overall diagram showing the different categories can be seen in Figure 2.  The 

selection of software must be seen as a non-exhaustive list and should be read as a suggestion for best 

practices based on our experiences in other relevant ongoing and finished projects where we were 

involved, like NanoSim [1][34], SimPhoNy [35] [2], VIMMP [36] [3], MarketPlace [37] [4], SimDome [38] 

[5], OntoTrans [6][39], OpenModel [40] [7], and VIPCOAT [41] [8]. The OntoCommons project [2] did an 

extensive landscape analysis of ontological engineering tools [42], only what we think is the most relevant 

selection is mentioned below. 

The content of this section is in its nature quite technical and is intended as a help for developers in 

DOME 4.0 to choose the right tools. Consequently, it might be hard to read for the casual reader. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 15 of 45 - 

 

Figure 2: Software components for DOME 4.0 platform development 

5.1 Identity and Access management 
 

Authentication, authorization, and access control are very important factors to achieve cyber security. 

Here authentication is the process of verifying the identity of the users, authorization is the process of 

checking if a user is allowed to access a specific resource. Access control makes sure that the user doesn’t 

access any resources that shouldn’t be accessed. For this, we can use pre-existing access control solutions 

with features required for DOME 4.0 (see Table 2 and Table 3). 

Table 2 Keycloack overview 

Name KeyCloak 

Description KeyCloak is an open-source identity and access management solution. 

Rationale The DOME 4.0 web platform will require a way to manage authorization and 
authentication of users. Used by MarketPlace [37], OntoTrans [39], VIPCOAT 
[41] 

Cons • No out of the box solution is available in KeyCloak to generate API keys 
(with specific scopes, expiry etc.). 

Pros • A range of options are available out of the box. 

• It can be integrated with existing user systems without the need for 
migrating these data. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 16 of 45 - 

• Single sign-on: users log in with a single ID and password and gain access 
to all connected systems. 

• Meets a range of security standards. 

• Can save time in development by offering authentication, authorization, 
and single sign-on all in one. 

• Offers an admin console (web-based GUI) that is easy to use. 

References • https://www.keycloak.org/ 

 

Table 3 ORY Network overview 

Name ORY Network 

Description The Ory Network is an access management system that provides full-scale 
authentication, authorization, federation, and user management for mobile 
apps, web apps, and any cloud service.  

Rationale The DOME 4.0 web platform will require a way to manage authorization and 
authentication of users. 

Cons • Smaller community compared to KeyCloak. 

• Less complete compared to KeyCloak. 

Pros • Lightweight. 

References • https://www.ory.sh/ 

 

5.2 Web Frameworks 
 

Web frameworks support the development of web applications (web services, web APIs and web 

resources). They also provide a standard way to build and deploy web applications and help to automate 

some processes during development. 

5.2.1 Web Servers 
 

Web servers are used to serve web content. The web server stores, processes, and delivers web content 

to users (via web browsers). It refers to both software and hardware. Table 4 and Table 5 provide an 

overview of available software. 

Table 4 NGINX overview 

Name NGINX 

Description Nginx is an open-source, high-performance HTTP server and reverse proxy. It 
is commonly used for load balancing, web acceleration, and security and 
anonymity. Used by MarketPlace [37], OntoTrans [39], VIPCOAT [41] 

Rationale The DOME 4.0 web platform needs to ensure smooth flow of network traffic 
between clients and servers. It also requires load balancing features. Used in 
VIPCOAT [41] and MarketPlace [37]. 

Cons • Less extensive list of features and functionality compared to Apache. 

• Less community support compared to Apache. 

https://www.keycloak.org/
https://www.ory.sh/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 17 of 45 - 

Pros • Lightweight: requires relatively few resources and memory. 

• Provides load balancing. 

References • https://docs.nginx.com/ 

 

Table 5 Apache HTTP server overview 

Name Apache  

Description The Apache HTTP Server Project is an effort to develop and maintain an open-
source HTTP server for modern operating systems including UNIX and 
Windows. The goal of this project is to provide a secure, efficient and 
extensible server that provides HTTP services in sync with the current HTTP 
standards. 

Rationale The DOME 4.0 web platform needs to be stable, fast, and secure. This can be 
achieved using an Apache Server for the deployment. 

Cons • Consumes more ram under heavier load than nginx. 

• Spawn new processes for each request making things less efficient. 

Pros • Provides an admin console. 

• Greater selection of features compared to nginx. 

References • https://httpd.apache.org/ 

 

5.2.2 Orchestration and Management  
 

Container orchestration and management helps automate creation, deployment, management, scaling 

and networking of containers. This helps manage containers in microservice architecture at scale. Table 

6, Table 7, Table 8, and Table 9 provide an overview of commonly used software. 

Table 6 Kubernetes overview 

Name Kubernetes 

Description Kubernetes is an open-source system for automating deployment, scaling, 
and management of containerized applications. 

Rationale System to manage and deploy application services; it groups containers that 

make up an application into logical units for easy management and discovery.  

Cons Not every organization has multiple containers to deploy, nor need for high 
availability. Can be complex to get running, with steep learning curve for 
starters, but can be worth-while for organization with sufficient resources 
with the right profile, who can dedicate sufficient time.  

Pros Strong community with many years of experience and track record. Provides 
advantages on-premise, hybrid or public cloud infrastructure, flexible to scale 
without increasing the operations team. Powerful capabilities. 

References • https://kubernetes.io/ 

 

Table 7 Docker overview 

Name Docker 

https://docs.nginx.com/
https://httpd.apache.org/
https://kubernetes.io/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 18 of 45 - 

Description Docker is OS-level virtualization platform that provides software to run in 
deployable containers which are self-contained with all required 
dependencies. This allows for a more effective way of deploying software 
applications. Used by MarketPlace [37], OntoTrans [39], VIPCOAT [41] 

Rationale With the numerous services that run in the DOME 4.0 framework, the trouble 
of installing each element on different hosts are avoided by using containers 
that any cloud service or on-site mainframes can run. 

Cons • Has gaps in documentation, especially for Mac.  

• Not good for monitoring (for monitoring we need to use docker desktop 
which is not free). 

Pros • Makes deployment easier and more effective. 

• Allows for isolating environments for easier debugging 

• Comes with a comprehensive container registry with thousands of 
container images. 

References • https://docs.docker.com/ 

• https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-
difference-between-devops-tool/ 

 

Table 8 Ansible overview 

Name Ansible 

Description Ansible is an open-source automation tool from Red Hat that automates 
provisioning, configuration management, application deployment, 
orchestration, and many other manual IT processes. 

Rationale The DOME 4.0 web platform might benefit from automating some tasks. 

Cons • It does not have a good user interface. 

• Requires complex data structures for network automation tasks. 

• It has limited Windows support. 

Pros • Provides step-by-step reporting that provides information on task success 
and failure. 

• Simplifies CI/CD (continuous integration and deployment) processes, thus 
reducing human errors. 

References • https://www.ansible.com/ 

• https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-
difference-between-devops-tool/ 

 

Table 9 Docker Compose overview 

Name Docker Compose 

Description Managing several different docker containers can be a tedious task. Docker 
Compose is a tool that helps in overcoming this problem, and that allows us to 
easily handle multiple containers at once. Used by MarketPlace [37], 
OntoTrans [39], VIPCOAT [41] 

Rationale The DOME 4.0 web platform will consist of several different services. Using 
Docker in each of these services and tying them all together using Docker 
Compose can simplify both development and deployment. 

https://docs.docker.com/
https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-difference-between-devops-tool/
https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-difference-between-devops-tool/
https://www.ansible.com/
https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-difference-between-devops-tool/
https://cloudinfrastructureservices.co.uk/ansible-vs-docker-whats-the-difference-between-devops-tool/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 19 of 45 - 

Cons • A container cannot be replaced without downtime (con for production in 
particular). 

• There are no health checks available in production with Docker Compose: 
docker run and docker-compose won’t re-create containers that failed a 
built-in health check.   

Pros • Fast and simple configuration with YAML scripts. 

• It allows for hosting multiple isolated environments on a single host, 
leading to an efficient use of resources. 

• Portability: All the services are defined inside a docker-compose file, and 
the entire configuration can easily be accessed and shared. 

References • https://docs.docker.com/compose/ 

 

5.2.3 Back-end Frameworks 
Backend web frameworks are tools that help in the development of server-side software (all the APIs, 

architecture, connecting to databases, and functionalities that happen behind the scenes) This mainly 

focuses on server-side scripting languages like Python, JavaScript, and PHP. Concerning specifically 

Python, we should use a Python version that is currently supported, which currently means a minimum of 

Python 3.7 for all Python-based packages developed within the project [43]. Similar considerations should 

be done when using other languages. A detailed overview of tools used in the project is presented in Table 

10, Table 11, Table 12, and Table 13. 

Table 10 Flask overivew 

Name Flask 

Description Flask is a free and open-source micro web framework for developing web 
applications and services written in Python. It is classified as micro web 
framework as it is light weight and provides only necessary components 

Rationale The DOME 4.0 project needs a fast, user-friendly web platform for registering, 
searching, and accessing data. Using a microframework such as Flask 
simplifies the development of this platform. Used by MarketPlace [37], 
VIPCOAT [41] 

Cons • Not a lot of tools: Lacks a large toolbox which means that developers 
might have to manually add extensions such as libraries. Adding many 
(third-party) extensions can cause the app to slow down and might also 
pose a security risk. 

• API documentation documents must be created manually. 

Pros • Flexible and minimalistic: almost all the parts of flask are open to change.  

• Lightweight: there are few constituent parts need to be assembled and 
reassembled, and it does not rely on many extensions to function. 

• Supports modular programming. 

• Well documented. 

References • https://pythonbasics.org/what-is-flask-python/ 

 

Table 11 FastAPI overview 

Name FastAPI 

https://docs.docker.com/compose/
https://pythonbasics.org/what-is-flask-python/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 20 of 45 - 

Description FastAPI is a modern, fast (high-performance), web framework for building 
APIs based on standard Python type hints.  Used by MarketPlace [37] 

Rationale The DOME 4.0 web platform needs a set of APIs for the different services to 
communicate with each other and for DOME 4.0 to communicate with 
external data sources and data sinks. Using a web framework such as FastAPI 
simplifies the development of these APIs. Used in Marketplace [37]. 

Cons • Small community of developers compared to flask 

• Only compatible with versions  Python 3.7+ 

Pros • Fast: high performance, on par with NODEJS and Go  

• Fast to code - saves time in development of APIs.  

• Based on, and fully compatible with, the open standards for APIs: 
OpenAPI (previously known as Swagger) and JSON Schema.  

• Easy testing. 

• Well documented.  

References • https://fastapi.tiangolo.com/ 

 

Table 12 Django overview 

Name Django 

Description Django is a free and open-source, Python-based web framework for 
developing web applications and services. 

Rationale The DOME 4.0 project needs a fast, user-friendly web platform for registering, 
searching for, and getting access to data. Using a microframework such as 
Django simplifies the development of this platform. 

Cons • Has more complicated features than Flask, which can lead to a larger on-
boarding/learning process. 

Pros • Saves time in development, as the whole idea of Django is to build and 
scale up projects incredibly quickly.  

• Large community and many learning resources. 

• Well documented. 

• Comes with security features such as a user authentication system 
already set up. 

References • https://www.djangoproject.com/ 

 

Table 13 PHP overview 

Name PHP 

Description PHP stands for Hypertext Pre-processor and is an open-source general-
purpose scripting language. It can be embedded into HTML and is suited for 
web development. 

Rationale The DOME 4.0 project needs a fast, user-friendly web platform for registering, 
searching for, and accessing data. Using PHP could simplify the development 
of this platform. 

Cons • PHP has a weak type, which may lead to incorrect data and unexpected 
bugs. 

https://fastapi.tiangolo.com/
https://www.djangoproject.com/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 21 of 45 - 

• Differences between older and updated versions can introduce errors in 
scripts. 

Pros • Simple (small barrier for developers), but still offers many advanced 
features. 

• It is platform-independent: PHP-based applications can run on any OS. 

• Well-documented. 

References • https://www.php.net/ 

 

5.2.4 Front-end Frameworks 
Frontend web frameworks provide packages and libraries for GUI (graphical user interface) development. 

This usually provides reusable widgets and code snippets to manage user interaction with the web 

application. Commonly used frameworks are presented in Table 14, Table 15, Table 16, Table 17. 

Table 14 AngularJS / Angular overview 

Name AngularJS / Angular 

Description Angular is a development platform, built on TypeScript. As a platform, Angular 
includes a component-based framework for building scalable web 
applications, a collection of libraries covering a wide variety of features, and a 
suite of developer tools. Used by MarketPlace [37], VIPCOAT [41]. 

Rationale The DOME 4.0 web platform needs a clean and user-friendly front-end. Using 
a front-end development framework will simplify and speed up the 
development. Used in VIPCOAT [41]. 

Cons • Angular is complex and verbose, so it's not suitable for small apps. It's 
designed for complex systems.  

• It has a steep learning curve, and it may take some time to master it. 

• Angular is a SPA (single page application), so it has limited SEO (search 
engine optimization) capabilities. 

Pros • Angular sites are SPAs. SPAs allow us to load new pages without 
requesting the server, giving a more dynamic and interactive experience.  

• It has a lot of features built in. 

• It is cross-platform. 

References • https://angular.io/docs 

 

Table 15 React overview 

Name React 

Description React (also known as React.js or ReactJS) is a free and open-source front-end 
JavaScript library for building user interfaces based on UI components. It is 
maintained by Meta (formerly Facebook) and a community of individual 
developers and companies. 

Rationale The DOME 4.0 web platform needs a clean and user-friendly front-end. Using 
a front-end development framework will simplify and speed up the 
development. 

Cons • Not well documented. 

https://www.php.net/
https://angular.io/docs


D5.5 – Standards and Best Practices  

 

[Public]  - Page 22 of 45 - 

• Uses JSX (syntax extension that allowing for mixing of HTML and 
JavaScript). This has its benefits but can be a barrier for developers. 

Pros • Large community. 

• Backward compatibility (in particular, seldom large changes to API). 

References • https://reactjs.org/ 

 

Table 16 Node.js overview 

Name Node.js 

Description Node.js is an open-source, cross-platform runtime environment for server-
side and networking applications. It can be used in both front- and back-end. 

Rationale The DOME 4.0 web platform needs a clean and user-friendly front-end. Using 
a front-end development framework will simplify and speed up the 
development. 

Cons • Unstable APIs – migrating code from an older version of node.js to a new 
one might be cumbersome since the APIs keep changing. 

• Lacks a strong library support system, which means that developers might 
have to rely on third-party libraries.  

Pros • Large community. 

• Offers easy scalability due to its asynchronous and event-driven nature. 
This makes Node.js suited for high throughput and real-time applications. 

• High performance compared to other server-side scripting languages 
(such as Java or PHP). 

• It is cross-platform. 

References • https://nodejs.org/en/about/ 

 

Table 17 Bootstrap overview 

Name Bootstrap  

Description Bootstrap is an open-source front-end web development framework, based 
on HTML5, CSS, and JavaScript. Bootstrap makes it possible for developers to 
quickly launch a fully featured, mobile-responsive site. Used by MarketPlace 
[37], VIPCOAT [41]. 

Rationale The DOME 4.0 web platform needs a clean and user-friendly front-end. Using 
a front-end development framework will simplify and speed up the 
development. Used in VIPCOAT [41] and MarketPlace [37]. 

Cons • Its naming scheme can be confusing. 

• Everything built with Bootstrap will have similar looks (one might be able 
to override and modify style sheets manually, but this can be 
cumbersome). 

Pros • It is responsive, meaning that the design will automatically resize to suit 
the page (important since many people will browse the web from a 
mobile phone or tablet). 

• It includes major components such as dropdowns and navigation bars. 

• No CSS knowledge needed. 

References • https://getbootstrap.com/docs/4.1/about/overview/ 

https://reactjs.org/
https://nodejs.org/en/about/
https://getbootstrap.com/docs/4.1/about/overview/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 23 of 45 - 

 

5.3 Storage 
5.3.1 Standard databases 
Databases are used to store and retrieve data. There are many types of databases. What type of database 

is used by a particular web platform depends on how and what kind of data will be used in that platform. 

Table 18, Table 19, and Table 20 presented commonly used databases. 

Table 18 PostgreSQL overview 

Name PostgreSQL 

Description PostgreSQL is an open-source database management system. It supports both 
SQL and JSON for relational and non-relational queries.   Used by MarketPlace 
[37], VIPCOAT [41]. 

Rationale The DOME 4.0 platform may need to store (meta)data. 

Cons • Open-source apps that support MySQL may not support PostgreSQL 

• Slower than MySQL on performance metrics. 

Pros • It is highly extendible – if you need an additional feature, you can add it 
yourself. 

• Low maintenance and administration for both embedded and enterprise 
use of PostgreSQL. 

References • https://www.postgresql.org/ 

 

Table 19 MongoDB overview 

Name MongoDB 

Description MongoDB is a free to use document database. It stores data in flexible, JSON-
like documents, meaning fields can vary from document to document and 
data structure can be changed over time. Used by VIPCOAT [41]. 

Rationale The DOME 4.0 platform may need to store (meta)data. Used in VIPCOAT. 

Cons • Less flexibility with querying than a relational database (e.g., JOINs are not 
supported) 

Pros • Scalability: MongoDB supports horizontal scaling through sharding. 

• Flexibility in that it is schema-less. 

References • https://www.mongodb.com/what-is-mongodb 

 

Table 20 Redis overview 

Name Redis 

Description Redis is an open source (BSD licensed), in-memory data structure store, used 
as a database, cache, message broker, and streaming engine. Used by 
OntoTrans[39] 

Rationale The DOME 4.0 platform may need to store (meta)data. Used by OntoTrans. 

Cons • It does not support a query language, so there is no case of using ad-hoc 
queries. Data access paths must be designed, which results in a loss of 
flexibility. 

https://www.postgresql.org/
https://www.mongodb.com/what-is-mongodb


D5.5 – Standards and Best Practices  

 

[Public]  - Page 24 of 45 - 

Pros • Speed: It is one of the fastest caching technologies on the market. 

• Easy setup 

• It has flexible data structures – supports almost all data structures. 

References • https://redis.io/docs/about/ 

 

5.3.2 Triplestore 
Triplestore is a database that stores and retrieves them through semantic queries. Triplestore stores 

data as triples. A triple is a data entity composed of subject-object-predicate. Table 21 and Table 22 

present commonly used triple stores. 

Table 21 AllegroGraph overview 

Name AllegroGraph 

Description High performance, persistent RDF store with additional support for Graph 
DBMS (database management system). Commercial, but has a free limited 
community edition. Used by MarketPlace [37], OntoTrans [39]. 

Rationale DOME 4.0 aims to facilitate maximum knowledge extraction with the help of 
ontology-driven semantic data interoperability and modern data processing 
technologies. In this context, the DOME 4.0 platform needs to store RDF 
triples, and the triples must be searchable through queries. This can be 
achieved using a triplestore such as AllegroGraph. Used in MarketPlace[37] as 
a demo. 

Cons • One of AllegroGraph limitations is it focuses on geo-temporal reasoning 
and social network analysis.  

Pros • Has efficient use of memory by combining disk storage, making it possible 
to scale up to one billion nodes, always maintaining top performance. 

• Suited to support ad-hoc queries through SPARQL, Prolog and languages 
like JavaScript. 

• Triple level security with security filters. 

• SOLR and MongoDB integration. 

• All clients are based on REST protocol. 

References • https://dl.acm.org/doi/10.5220/0006910203730380 

• https://allegrograph.com/ 

 

Table 22 Stardog overview 

Name Stardog 

Description Enterprise Knowledge Graph platform and graph DBMS with high availability, 
high performance reasoning, and virtualization. Commercial, but has a 60-day 
fully featured trial license and a 1-year fully featured non-commercial use 
license for academics/students. 

Rationale DOME 4.0 aims to facilitate maximum knowledge extraction with the help of 
ontology-driven semantic data interoperability and modern data processing 
technologies. In this context, the DOME 4.0 platform needs to store RDF 
triples, and the triples must be searchable through queries. This can be 
achieved using a graph database such as Stardog. Used in OntoTrans [39]. 

https://redis.io/docs/about/
https://dl.acm.org/doi/10.5220/0006910203730380
https://allegrograph.com/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 25 of 45 - 

Cons • Relatively small community. 

Pros • Built-in machine learning 

• Based on open standards 

References • https://www.stardog.com/ 

 

5.4 Interoperability Framework 
Interoperability frameworks provide a set of tools and concepts to describe data and enable data to be 

reused. Commonly used software is presented in Table 23 and Table 24. 

Table 23 DLite (SOFT) overview 

Name DLite (SOFT) 

Description DLite is a lightweight interoperability framework, for working with and sharing 
scientific data. DLite is a C implementation of the SINTEF Open Framework 
and Tools (SOFT), which is a set of concepts and tools for how to efficiently 
describe and work with scientific data. Used by OntoTrans [39], VIPCOAT [41]. 

Rationale DOME 4.0 aims to facilitate maximum knowledge extraction with the help of 
ontology-driven semantic data interoperability and modern data processing 
technologies. For this, an interoperability framework is needed. 

Cons • May feel little abstract the first time the user is confronted with DLite. 

Pros • Simplistic data models that are close to the data source/sink providing 
easy onboarding. 

• Available as a python package 

• Full semantics is obtained via mappings to ontological concepts. 

• Via ontological mappings, DLite allows to transparently convert and 
represent the data as the form the user needs. 

• Separation of concerns: Data models and ontologies are created 
separately (i.e., ontologies are not required as inputs). 

• Not bound to a specific ontological framework. Enables cross-domain 
interoperability. 

• Fast and efficient exchange of data between different platforms. 

References • https://github.com/SINTEF/dlite 

 

Table 24 CUDS/CUBA overview 

Name CUDS/CUBA 

Description CUDS (Common Universal Data Structure) is a data structure that is used to 
uniformly represent ontology concepts in programming code. The CUDS 
object is an ontology individual that can be used like a container. It has 
attributes and is connected to other cuds objects via relationships. It is used 
to facilitate semantic interoperability within the SimPhoNy framework. Used 
by MarketPlace [37], SimPhoNy [35], and SimDome [38]. 

Rationale DOME 4.0 aims to facilitate maximum knowledge extraction with the help of 
ontology-driven semantic data interoperability and modern data processing 
technologies. For this, an interoperability framework is needed. 

Cons • Requires ontologies as inputs. 

https://www.stardog.com/
https://github.com/SINTEF/dlite


D5.5 – Standards and Best Practices  

 

[Public]  - Page 26 of 45 - 

Pros • Allows for a semantic demonstration of the data with more specialised 
domain knowledge. 

• Allow a faster search of the relevant search string. 

• Standardise the format of the data presented in DOME 4.0. 

• Reducing the computing cost and other costs associated with human 
intervention. 

• Allowing fast and efficient data exchange among other platforms and 
services. 

References • https://simphony.readthedocs.io/en/latest/overview.html 

• https://simphony.readthedocs.io/en/latest/jupyter/cuds_api.html 

 

5.5 Tools 
The tools in Table 25, Table 26, and Table 27 might be useful for different tasks in DOME 4.0 like 

developing reference connectors and ontologies. 

Table 25 Cookiecutter overview 

Name Cookiecutter 

Description A command-line utility that creates projects from cookiecutters (project 
templates), e.g., creating a Python package project from a Python package 
project template. Used by OntoTrans [39]. 

Rationale The DOME 4.0 web platform will consist of several different services. Using a 
scaffolding generator such as cookiecutter can save time in development and 
ensure consistency across the services by defining a project structure. Used in 
OntoTrans[39]. 

Cons • Relatively small community. 

Pros • Cross-platform 

• Project templates can be in any programming language or markup format: 
Python, JavaScript, Ruby, CoffeeScript, RST, Markdown, CSS, HTML, etc. 

• Well-documented. 

• You can use multiple languages in the same project template. 

References • https://www.cookiecutter.io/ 

 

Table 26 Protégé overview 

Name Protégé 

Description Protégé is an open-source ontology editor and a knowledge management 
system.  

Rationale The DOME 4.0 web platform will be using ontologies for its functionalities and 
protégé will be useful in developing it. 

Cons • Some plugins for reasoning are difficult to install 

Pros • Support for W3C standards 

• Active community (both academic, government and corporate) 

References • https://protege.stanford.edu/ 

 

https://simphony.readthedocs.io/en/latest/overview.html
https://simphony.readthedocs.io/en/latest/jupyter/cuds_api.html
https://www.cookiecutter.io/
https://protege.stanford.edu/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 27 of 45 - 

Table 27 EMMOntoPy overview 

Name EMMOntoPy 

Description It is a python API to work with ontology. Developed to work with EMMO 
based ontologies. It is an extension of owlready2.   

Rationale The DOME 4.0 web platform will be using ontologies for its functionalities, 
and this might support developing it. 

Cons •  Command line-based coding tool no GUI.  

Pros • Can generate an ontology by filling out an excel template to improve 
interaction between domain experts and otologists. 

• Work with ontologies using python (Make, generate, extend, 
visualize) 

References • https://github.com/emmo-repo/EMMOntoPy 

• https://emmo-repo.github.io/ 

 Technologies 

As opposed to the specific software described in the previous section, this section describes some of the 

technologies that are the best practices and standards for implementing authentication, authorization, 

communication interfaces, API specification standard and persistence. This is all required for the DOME 

4.0 platform. The required technologies for DOME 4.0 are shown in Figure 3. 

 

Figure 3: Required Technologies 

6.1 Authentication and Authorization 
This is a very important part of any web application. We need certificates and other protocols to make 

sure a web application is not a malicious one or something that potentially harms our web server if 

interacted with. We need to make sure the identity is verified, and communication is secured. Table 28 

and Table 29 present the relevant technologies. 

https://github.com/emmo-repo/EMMOntoPy
https://emmo-repo.github.io/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 28 of 45 - 

Table 28 X.509 (certificate) overview 

Name X.509 (certificate) 

Description X.509 is a standard format for public key certificates. This can be used to 
verify the identity of a web server and secure communications. 

Rationale Must have for connecting with IDS platforms. And any other secure platforms. 

Cons • Requires centralized administration and chain of trust. 

Pros • Proven technology. 

• Basis for https. 

References • RFC5280:  https://www.rfc-editor.org/rfc/rfc5280 

 

Table 29 OAuth2 overview 

Name OAuth2 

Description OAuth2 is a standard designed to allow a website or application to access 
resources hosted by other web apps on behalf of a user.    

Rationale Must have for connecting with other platforms. 

Cons • There is no common format, as a result, each service requires its own 
implementation. 

• In the process of user verification, sometimes additional requests must be 
made to get minimal user information. This can be solved using JWT token, 
but not all services support it. 

Pros • Well documented. 

• Can be used on almost any platform. 

References • https://oauth.net/2/ 

 

6.2 Communication interfaces 
Communication interfaces enable different software, databases, and networks to communicate with each 

other. Here we are focusing on the interfaces that can enable internal communication between different 

components and for the DOME 4.0 platform to interact with external systems. Table 30 and Table 31 

present the relevant technologies. 

Table 30 RESTful API overview 

Name RESTful API 

Description A REST (or RESTful) API is an API that conforms to the constraints of the REST 
architectural style and allows for interaction with RESTful web services. REST 
is short for representational state transfer.   Used by MarketPlace [37], 
OntoTrans [39], VIPCOAT [41]. 

Rationale The DOME 4.0 web platform needs a set of APIs for the different services to 
communicate with each other and for DOME 4.0 to communicate with 
external data sources and data sinks. 

Cons • It is not suitable for passing confidential data between client and server 
since it does not impose security. 

Pros • It provides a lot of flexibility 

• REST APIs are the most used APIs for web services. 

https://www.rfc-editor.org/rfc/rfc5280
https://oauth.net/2/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 29 of 45 - 

• It uses standard HTTP procedure callouts to retrieve data and requests. 

• It allows for standard-based protection using OAuth protocols to verify 
the REST requests. 

References • https://www.ibm.com/cloud/learn/rest-apis 

 

Table 31 GraphQL overview 

Name GraphQL 

Description GraphQL is an open-source data query and manipulation language for APIs, 
and a runtime for fulfilling queries with existing data 

Rationale The DOME 4.0 web platform needs to communicate with different services 
and with external data sources and data sinks. And between its internal 
services. 

Cons • Difficult to implement cache 

• Increased query complexity 

Pros • Fast development 

• Fetches data based on query. No predefined schema like REST.  

References • https://graphql.org/ 

 

6.3 API Specification 
API specification/ documentation is necessary to understand the capabilities of a service. When properly 

defined, a consumer can understand and interact with the remote service with a minimal amount of 

implementation logic (see Table 32). 

Table 32 OpenAPI overview 

Name OpenAPI 3 

Description The OpenAPI Specification (OAS) defines a standard interface to REST APIs. 
This interface is language-agnostic and allows both humans and computers to 
discover and understand the service's capabilities without access to source 
code, documentation, or through network traffic inspection.   Used by 
MarketPlace[37], OntoTrans[39], VIPCOAT[41] 

Rationale The backend of the DOME 4.0 web platform needs a set of APIs for the 
different services to communicate with each other and for DOME 4.0 to 
communicate with external data sources and data sinks. 

Cons • The fact that OpenAPI is language-agnostic has its benefits, but also 
introduces a lot of complexity in the incorporation of language-specific 
frameworks, third party APIs, and server-based extensions. 

Pros • Stable implementation. 

• Large community. 

• Large ecosystem of tools (created under the Swagger brand) that can be 
used to speed up the API development process. 

References • https://swagger.io/specification/ 

 

https://www.ibm.com/cloud/learn/rest-apis
https://graphql.org/
https://swagger.io/specification/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 30 of 45 - 

6.4 Persistence 
Data is an important part of any web platform. Different kinds of storage technologies are required to 

deal with this data. What storage technology to choose will vary with different requirements of different 

web platforms. Relevant technologies are presented in Table 33, Table 34, and Table 35. 

Table 33 Triplestore overview 

Name Triplestore 

Description The triplestore is a database that stores RDF triples. It can handle semantic 
queries and use inference for uncovering new information out of the existing 
relations.  

Rationale DOME 4.0 aims to facilitate maximum knowledge extraction with the help of 
ontology-driven semantic data interoperability and modern data processing 
technologies. In this context, the DOME 4.0 platform needs to store RDF 
triples, and the triples must be searchable through queries. 

Cons • Difficult to store data that can’t be defined as triples (like documents) 

Pros • More flexible than a relational database. 

• Will typically be less costly than a relational database.  

• Facilitates easy sharing of data with URIs. 

• Easy import and export of data. 

References • https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-
triplestore/ 

 

Table 34 "Standard" database (relational/NoSQL) overview 

Name "Standard" database (relational/NoSQL) 

Description A relational database (RDB) is a collection of data items structured as tables, 
rows, and columns. An RDB can establish relationships between these items 
by joining tables, which makes it easy to understand and gain insights about 
the relationship between various data points.  
NoSQL databases are non-tabular databases and store data differently than 
relational tables. NoSQL databases come in a variety of types based on their 
data model. The main types are document, key-value, wide-column, and 
graph. They provide flexible schemas and scale easily with large amounts of 
data and high user loads. 

Rationale The DOME 4.0 platform may need to store (meta)data. 

Cons • RBD is costly to set up and maintain. 

• RBD requires a lot of physical memory. 

• Less flexibility with querying in NoSQL 

Pros • An RDB is strictly defined and well-organized, which prevents duplication 
of data. 

• A NoSQL can store both structured and semi-structured data 

• Collaboration: Multiple users can access the DB to retrieve information at 
the same time, even when data is being updated. 

References • https://cloud.google.com/learn/what-is-a-relational-database 

• https://www.mongodb.com/nosql-explained 

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/
https://cloud.google.com/learn/what-is-a-relational-database
https://www.mongodb.com/nosql-explained


D5.5 – Standards and Best Practices  

 

[Public]  - Page 31 of 45 - 

 

Table 35 Cache storage (key/value store) overview 

Name Cache storage (key/value store) 

Description A cache is a hardware or software component that stores data with the 
purpose of serving future requests for that data faster. 

Rationale The DOME 4.0 web platform needs to be stable, fast, and secure. A cache 
storage can help improve both the speed and the stability. 

Cons • Risk of presenting users with stale data, that is, outdated content.  

• Lowering the risk of stale data typically introduces a lot of complexity, 
making the code more difficult to maintain. 

Pros • Faster loading times for websites and applications. 

• Reduces the load on back-end databases. 

• Accelerates data retrieval (faster queries). 

References • https://www.techtarget.com/searchstorage/definition/cache 

 Chemical Substance Identifiers 

Searching for chemical substances is not as straight forward as it might seem. To alleviate this, there are 

several ways to represent chemical substances in a systematic way. We mention some of them relevant 

for DOME 4.0 in the next sections, but the list of relevant identifiers may be extended in the future. 

7.1 IUPAC Naming Rules 
The International Union of Pure and Applied Chemistry (IUPAC) provides a set of recommendations on 

how to name chemical substances in a systematic, unambiguous manner. These recommendations are 

listed in the red book and the blue book for inorganic [44] and organic chemistry [45] respectively. The 

advantage with these naming recommendations is that it is possible to recognize, without a doubt, what 

chemical substance the user is looking for. The disadvantage is that the rules are quite complex and 

might be hard to parse for a computer. IUPAC naming rules are supported by some data sources 

relevant for DOME 4.0. For instance Cheméo [46], PubChem [47]. 

7.2 SMILES 
The Simplified Molecular-Input Line-Entry System (SMILES) is a way to textually represent the structure 

of chemical substances [48]. The advantage of SMILES is that they are to a certain degree easy to read 

(complex structures are complex regardless of the representation). A thing to note is that it is possible to 

construct several SMILES that will lead to the same chemical substance. It is also possible to create 

SMILES that are not ambiguous. Chirality might for instance not be taken into account (but it can). 

SMILES are supported by some data sources relevant for DOME 4.0. For instance Cheméo [46], 

PubChem [47]. 

7.3 CAS Registry Number 
CAS registry numbers [49] are generated for every chemical substance in the open scientific literature by 

the American Chemical Society. The big advantage with the CAS registry number is that every known 

chemical substance will have one, but there is no way to know what chemical substance a CAS registry 

https://www.techtarget.com/searchstorage/definition/cache


D5.5 – Standards and Best Practices  

 

[Public]  - Page 32 of 45 - 

number represents without looking it up somewhere. This means the CAS registry number cannot be 

used as the only way to recognize a chemical substance in practical applications. CAS registry numbers 

are supported by some data sources relevant for DOME 4.0. For instance Cheméo [46], PubChem [47]. 

7.4 EC number 
The EC number is a unique 7 digit identifier assigned to each substance regulated by the European 

Union. This number is currently not in use by any of the sources relevant to the DOME 4.0 platform, but 

should not be disregarded in the future. It only carries limited information and as with the CAS number 

the chemical must be looked up [50]. 

 

7.5 InChI/InChIKey 
Similar to SMILES, The International Chemical Identifier (InChI) is another textual identifier for chemical 

substances proposed by IUPAC [51]. The InChI is generated by an algorithm taking the chemical 

structure as the input. The InChI carries chemical information, is human readable and is guaranteed to 

be unique. The InChI can then be seen as a compromise between CAS registry numbers and IUPAC 

naming rules. It does require an algorithm to generate the InChI, but the InChI is well suited as an input 

to search data sources for a given chemical substance.  

InChIKey is a hashed version of InChI consisting of 27 characters. This can be seen as a no-human 

readable short version of InChI. A given InChI will always give the same InChIKey, but the only way to go 

the other way is to look up the InChIKey in a database.  

InChIKeys are supported by some data sources relevant for DOME 4.0. For instance PubChem [47]. 

 

 Conclusions / Next steps 

This report summarizes the standards and best practices collected for the development of the DOME 4.0 

ecosystem. A lot of the recommendation from this report has already been considered and is being used 

in the core work packages. 

Even though this report is written, the work to make sure the DOME 4.0 is kept up to date with the 

current standards and best practices will continue. It makes sense to do another round of contact with 

relevant projects, as these all have progressed further since the previous round. As the development of 

the core platform progress, even more of the standards and best practices listed in this report will 

become useful.  

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 33 of 45 - 

 Lessons learnt and deviations from Annex 1 

While working on this deliverable we have realized that the task of collecting relevant standards and 

best practices for a project such as DOME 4.0 is a complex and open-ended task. To alleviate this 

challenge, we focused on what we thought would be most relevant to the implementation of the DOME 

4.0 ecosystem. We had contact with a lot of projects and initiatives (through Task 5.1-5.3), but with 

limited time for collaboration and several topics to cover, we might have missed some things, and 

further collaboration will be sought. This was a lot easier for the projects were some of the DOME 4.0 

partners were also partners in other projects. We then had a direct line of communication.  

There are no known deviations from Annex 1 in the description of action. 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 34 of 45 - 

  References 

[1] M. D. Wilkinson et al., ‘The FAIR Guiding Principles for scientific data management and 
stewardship’, Sci. Data, vol. 3, no. 1, Art. no. 1, Mar. 2016, doi: 10.1038/sdata.2016.18. 

[2] ‘OntoCommons’, (2020-2023) received funding from the European Union’s Horizon 2020 research 
and innovation programme under Grant Agreement no. 958371. 

[3] L. A. Slaughter and J. Otten, ‘OntoCommons D2.2 - TLOMLO Landscape Analysis Report’, Jan. 2022, 
doi: 10.5281/zenodo.6504440. 

[4] ‘Basic Formal Ontology (BFO) | Home’. https://basic-formal-ontology.org/ (accessed Nov. 11, 
2022). 

[5] R. Arp, B. Smith, and A. D. Spear, ‘Building Ontologies with Basic Formal Ontology’, MIT Press. 
https://mitpress.mit.edu/9780262527811/building-ontologies-with-basic-formal-ontology/ 
(accessed Nov. 11, 2022). 

[6] S. Borgo and C. Masolo, ‘Ontological Foundations of dolce’, in Theory and Applications of Ontology: 
Computer Applications, R. Poli, M. Healy, and A. Kameas, Eds. Dordrecht: Springer Netherlands, 
2010, pp. 279–295. doi: 10.1007/978-90-481-8847-5_13. 

[7] ‘Elementary Multiperspective Material Ontology (EMMO)’. Elementary Multiperspective Material 
Ontology (EMMO), Nov. 03, 2022. Accessed: Nov. 11, 2022. [Online]. Available: 
https://github.com/emmo-repo/EMMO 

[8] ‘EMMC ASBL | The European Materials Modelling Council’, https://emmc.eu/. https://emmc.eu/ 
(accessed Nov. 11, 2022). 

[9] ‘Data Catalog Vocabulary (DCAT) - Version 2’. https://www.w3.org/TR/vocab-dcat-2/ 
[10] ‘DCMI Metadata Terms’. https://www.dublincore.org/specifications/dublin-core/dcmi-terms/ 

(accessed Nov. 11, 2022). 
[11] ‘FOAF Vocabulary Specification’. http://xmlns.com/foaf/0.1/ (accessed Nov. 11, 2022). 
[12] ‘PROV-O: The PROV Ontology’. https://www.w3.org/TR/prov-o/ (accessed Nov. 11, 2022). 
[13] E. Ghedini, A. Hashibon, and J. Friis, ‘Deliverable D3.1 - “Semantic data exchange ontology”’, 2022. 

[Online]. Available: https://dome40.eu/sites/default/files/2022-11/DOME 4.0 D3.1 Semantic data 
exchange ontology 2022.08.05 PU - revised.pdf 

[14] ‘OntoCommons ontology catalogue’. https://data.ontocommons.linkeddata.es/index (accessed 
Nov. 11, 2022). 

[15] Y. L. Franc, ‘OntoCommons D3.2 - Report on existing domain ontologies in’, Mar. 2022, doi: 
10.5281/zenodo.6504553. 

[16] M. Poveda-Villalón, ‘OntoCommons D3.3 - Report on populated domain ontology registry’, Mar. 
2022, doi: 10.5281/zenodo.6504584. 

[17] ‘European Science Vocabulary (EuroSciVoc) - EU Vocabularies - Publications Office of the EU’. 
https://op.europa.eu/en/web/eu-vocabularies/euroscivoc (accessed Nov. 11, 2022). 

[18] Directorate-General for Research and Innovation (European Commission) and A. F. de Baas, What 
makes a material function?: let me compute the ways : modelling in H2020 LEIT NMBP programme 
materials and nanotechnology projects : sixth version. LU: Publications Office of the European 
Union, 2017. Accessed: Nov. 11, 2022. [Online]. Available: 
https://data.europa.eu/doi/10.2777/417118 

[19] ‘FAIR metrics and Data Quality | EOSC Association’. https://www.eosc.eu/advisory-groups/fair-
metrics-and-data-quality (accessed Nov. 16, 2022). 

[20] M. D. Wilkinson, S.-A. Sansone, E. Schultes, P. Doorn, L. O. Bonino da Silva Santos, and M. 
Dumontier, ‘A design framework and exemplar metrics for FAIRness’, Sci. Data, vol. 5, no. 1, Art. 
no. 1, Jun. 2018, doi: 10.1038/sdata.2018.118. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 35 of 45 - 

[21] R. Huber and A. Devaraju, ‘F-UJI : An Automated Tool for the Assessment and Improvement of the 
FAIRness of Research Data’, Copernicus Meetings, EGU21-15922, Mar. 2021. doi: 
10.5194/egusphere-egu21-15922. 

[22] ‘Data on the Web Best Practices’. https://www.w3.org/TR/dwbp/ (accessed Nov. 16, 2022). 
[23] ‘FAIR Data Maturity Model WG’, RDA, Sep. 23, 2018. https://www.rd-alliance.org/groups/fair-

data-maturity-model-wg (accessed Nov. 16, 2022). 
[24] ‘FAIRsFAIR project home page’. FAIRsFAIR.eu 
[25] ‘EOSC synergy – Building capacity, developing capability’. https://www.eosc-synergy.eu/ (accessed 

Nov. 16, 2022). 
[26] ‘FAIR Framework – EOSC synergy’. https://www.eosc-synergy.eu/results/fair-framework/ 

(accessed Nov. 16, 2022). 
[27] ‘FAIRsharing | Home’. https://fairsharing.org/ (accessed Nov. 16, 2022). 
[28] ‘The FAIR Maturity Evaluation Service’. https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/ 

(accessed Nov. 16, 2022). 
[29] ‘FAIRsharing Maturity Indicators’. 

https://fairsharing.org/search?q=&selected_facets=type_exact%3Ametric&fairsharingRegistry=Sta
ndard (accessed Nov. 16, 2022). 

[30] M. E. Conway, ‘How Do Committees Invent?’, Datamation magazine, Apr. 1968. Accessed: Nov. 14, 
2022. [Online]. Available: http://www.melconway.com/Home/Committees_Paper.html 

[31] ‘GitHub’, GitHub. https://github.com/ (accessed Nov. 15, 2022). 
[32] ‘GitLab’. https://about.gitlab.com/ (accessed Nov. 15, 2022). 
[33] Atlassian, ‘Bitbucket’, Bitbucket. https://bitbucket.org/product (accessed Nov. 15, 2022). 
[34] ‘NanoSim’, (2014-2017) received funding from the European Union’s FP7-NMP research and 

innovation programme under grant agreement no 604656. 
[35] ‘SimPhoNy’, (2014-2017) receives funding from the European Union’s FP7 under NMP-2013-1.4-1 

call with Grant agreement no:  604005. 
[36] ‘Virtual Materials Market Place (VIMMP)’, (2018-2022) receives funding from the European Union’s 

Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 760907. 
[37] ‘MarketPlace’, (2018-2022) receives funding from the European Union’s Horizon 2020 Research 

and Innovation Programme - H2020-NMBP-25-2017 Open Innovation Platform for Materials 
Modelling, under Grant Agreement no: 760173. 

[38] ‘SimDome’, (2019-2023) received funding from the European Union’s Horizon 2020 research and 
innovation programme under Grant Agreement number 814492. 

[39] ‘OntoTrans’, (2020-2024) receives funding from the European Union’s Horizon 2020 Research and 
Innovation Programme, under Grant Agreement no. 862136. 

[40] ‘OpenModel’, (2021-2025) receives funding from the European Union’s Horizon 2020 Research and 
Innovation Programme, under Grant Agreement no. 953167. 

[41] ‘VIPCOAT’, (2021-2025) receives funding from the European Union’s Horizon 2020 Research and 
Innovation Programme - DT-NMBP-11-2020 Open Innovation Platform for Materials Modelling, 
under Grant Agreement no: 952903. 

[42] M. G. Skjæveland, L. A. Slaughter, and C. Kindermann, ‘OntoCommons D4.3 - Report on Landscape 
Analysis of Ontology Engineering Tools’, Apr. 2022, doi: 10.5281/zenodo.6504670. 

[43] ‘Status of Python Versions’. https://devguide.python.org/versions/ (accessed Nov. 15, 2022). 
[44] N. G. Connelly, T. Damhus, R. M. Hartshorn, and A. T. Hutton, Eds., Nomenclature of Inorganic 

Chemistry: IUPAC Recommendations 2005. The Royal Society of Chemistry, 2005. 
[45] H. A. Favre and W. H. Powell, Nomenclature of Organic Chemistry: IUPAC Recommendations and 

Preferred Names 2013. The Royal Society of Chemistry, 2014. doi: 10.1039/9781849733069. 
[46] ‘Cheméo’, Cheméo. https://www.chemeo.com/ (accessed Nov. 11, 2022). 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 36 of 45 - 

[47] PubChem, ‘PubChem’. https://pubchem.ncbi.nlm.nih.gov/ (accessed Nov. 11, 2022). 
[48] D. Weininger, ‘SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules’, J. Chem. Inf. Comput. Sci., vol. 28, no. 1, pp. 31–36, Feb. 1988, 
doi: 10.1021/ci00057a005. 

[49] ‘CAS REGISTRY and CAS Registry Number FAQs’, CAS. 
https://www.cas.org/support/documentation/chemical-substances/faqs (accessed Nov. 11, 2022). 

[50] ‘EC Inventory - ECHA’. https://echa.europa.eu/information-on-chemicals/ec-inventory (accessed 
Nov. 15, 2022). 

[51] S. R. Heller, A. McNaught, I. Pletnev, S. Stein, and D. Tchekhovskoi, ‘InChI, the IUPAC International 
Chemical Identifier’, J. Cheminformatics, vol. 7, no. 1, p. 23, May 2015, doi: 10.1186/s13321-015-
0068-4. 

 

 

 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 37 of 45 - 

 Acknowledgement 

The author(s) would like to thank the partners in the project for their valuable comments on previous 

drafts and for performing the review.  

Project partners: 

# Type Partner Partner full name 
1 SME CMCL Computational Modelling Cambridge Limited 

2 Research FHG Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung E.V. 

3 Research INTRA Intrasoft International SA 

4 University UNIBO Alma Mater Studiorum – Universita di Bologna 

5 University EPFL Ecole Polytechnique Federale de Lausanne 

6 Research UKRI United Kingdom Research and Innovation 

7 Large Industry SISW Siemens Industry Software NV 

8 Large Industry BOSCH Robert Bosch GmbH 

9 SME UNR Uniresearch B.V. 

10 Research SINTEF SINTEF AS 

11 SME CNT Cambridge Nanomaterials Technology LTD 

12 University UCL University College London 
 

This document is part of a project that has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 953163. It is the property of the DOME 4.0 consortium 
and do not necessarily reflect the views of the European Commission. 

 

 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 38 of 45 - 

 Table of Abbreviations 

Abbreviation Explanation 
ADMS Asset Description Metadata Schema 

API Application Programming Interface 

BFO Basic Formal Ontology 

BSD Berkeley Software Distribution 

CAS Chemical Abstracts Service 

CI/CD  Continuous Integration/Continuous Deployment 

COAR Confederation of Open Access Repositories 

CORDIS Community Research and Development Information Service 

CSS Cascading Style Sheets 

CSVW Namespace Vocabulary Terms 

CUDS Common Universal Data Structure 

DBMS Database Management System 

DCAT Data Catalog Vocabulary 

DCTERMS Dublin Core metadata initiative metadata terms 

DOI Digital Object Identifier 

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering 

DQV Data Quality Vocabulary 

EC European Commission 

EMMC European Materials Modelling Council 

EMMO Elemental Multiperspective Material Ontology 

EOSC European Open Science Cloud 

FAIR Findable, Accessible, Interoperable, and Reusable 

FOAF Friend of a Friend 

GUI  Graphical User Interface 

HTTP Hypertext Transfer Protocol 

IDS International Data Spaces  

IRI Internationalized Resource Identifier 

ISBN International Standard Book Number  

ISO International Organization for Standardization 

IUPAC International Union of Pure and Applied Chemistry 

JSON JavaScript Object Notation 

JSON-LD JavaScript Object Notation for Linked Data 

MD5 Message-Digest algorithm 

OAS  OpenAPI Specification  

OCES Ontology Commons EcoSystem 

ORCID Open Researcher and Contributor ID 

OS Operating System 

OWL Web Ontology Language 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 39 of 45 - 

PHP Hypertext Pre-processor  

PROV-O The provenance ontology 

QUDT Quantities, Units, Dimensions and Data Types Ontologies 

RDA  Research Data Alliance 

RDB relational database  

RDF Resource Description Framework 

REST REpresentational State Transfer 

RFC Request for Comments 

RoMM Review of Materials Modelling 

RST reStructuredText 

SDMX Statistical Data and Metadata Exchange 

SEO Search Engine Optimization 

SKOS Simple Knowledge Organization System 

SMILES Simplified Molecular-Input Line-Entry System 

SOFT SINTEF Open Framework and Tools 

SPA Single Page Application 

SPARQL SPARQL Protocol and RDF Query Language 

SPDX  Software Package Data Exchange 

SQL Structured Query Language 

UUID Universally Unique Identifier 

W3C World Wide Web Consortium 

YAML YAML Ain't Markup Language 

  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 40 of 45 - 

Annex 1 

RDFS Data Exchange Vocabularies (RDFS-DEV) 
Here we briefly list the RDFS-DEV from which we will select the terms relevant for the scope of the 

project DOME 4.0.  

DCTERMS 
Dublin Core3 is a set of properties (vocabulary) for associating metadata with resources. It was originally 

developed to describe library resources, particularly documents, video files, books etc., and later 

extended for web resources, and it has also been used to describe a variety of other physical and digital 

resources. 

The Dublin Core metadata initiative includes the fifteen terms in the Dublin Core Metadata Element Set 

in addition to a larger set of properties, classes, datatypes, and schemes. Together, they are collectively 

referred to as "DCMI metadata terms" or "Dublin Core terms" (DCTERMS) for short. 

DCTERMS are expressed in RDF vocabularies. Each term is identified with a Uniform Resource Identifier 

(URI), which is a global identifier usable in Linked Data. Built into the Dublin Core standard are 

definitions of each metadata element – like native content standard – that state what kinds of 

information should be recorded where and how.  Associated with many of the data elements are data 

value standards such as the DCMI Type Vocabulary and ISO 639 language codes. 

We will hereafter refer to the RDF representation of the http://purl.org/dc/terms/ namespace published 

on 2020-01-20, and available at https://www.dublincore.org/schemas/rdfs/. 

DCAT 
DCAT is an RDF vocabulary designed to facilitate interoperability between data catalogues published on 

the Web. It enables a publisher to describe datasets and data services in a catalogue using a standard 

model and vocabulary that facilitates the consumption and aggregation of metadata from multiple 

catalogues. This can increase the discoverability of datasets and data services. It also makes it possible 

to have a decentralised approach to publishing data catalogues and makes federated search for datasets 

across catalogues in multiple sites possible using the same query mechanism and structure. Aggregated 

DCAT metadata can serve as a manifest file as part of the digital preservation process. 

As illustrated in Figure 1, DCAT relies on the FOAF and DCTERMS vocabularies. Note that while the 

current widely used DCAT version is 2.0, this work covers both the stable version 2.0 and the upcoming 

version 3.0. Whenever needed the explicit version will be mentioned.  

We will refer to the official RDF representation of DCAT version 2 available at 

https://github.com/w3c/dxwg/blob/gh-pages/dcat/rdf/dcat2.ttl.  

 
3 https://www.dublincore.org/  

http://purl.org/dc/terms/
https://www.dublincore.org/schemas/rdfs/
https://github.com/w3c/dxwg/blob/gh-pages/dcat/rdf/dcat2.ttl
https://www.dublincore.org/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 41 of 45 - 

 

Figure 4: The DCAT (shown is Version 3) schema relies on DCTERMS, FOAF, SKOS, etc.  Image from 
https://www.w3.org/TR/vocab-dcat-3/images/dcat-all-attributes.svg   



D5.5 – Standards and Best Practices  

 

[Public]  - Page 42 of 45 - 

PROV-O 
The provenance ontology, PROV (PROV-O) expresses the so called PROV Data Model4 using the OWL2 

Web Ontology Language (OWL2). PROV-O aims to provide a set of classes, properties, and restrictions 

that can be used to represent and interchange provenance information generated in different systems 

and under different contexts. PROV-O has three different main parts, arranged from the most simple 

and fundamental terms (and concepts) needed for simple applications of provenance to more complex 

ones. These are the 1) Starting Point terms, 2) Expanded terms, and 3) terms for Qualifying 

relationships. 

The Starting Point classes and properties provide 

the basis for the rest of the PROV Ontology and are 

used to create simple provenance descriptions. 

These include as shown in Figure 3 terms such as 

wasDerivedFrom, wasGeneratedBy, etc. These 

provide the minimal provenance elements.  

The Expanded classes and properties provide 

additional terms such as the special concepts that 

generate a dataset e.g., Person, or Organisation 

while the Qualified classes and properties provide 

elaborated information about binary relations 

asserted using Starting Point and Expanded 

properties. These include e.g., Start, End, Usage, of a 

data set and similar concepts. The entire PROV-O can be consumed by EMMO directly with the 

elementary mappings proposed here.  

 

  

 
4 http://www.w3.org/TR/2013/REC-prov-dm-20130430/  

Figure 5: The three Starting Point classes and the 
properties that relate them.  
From https://www.w3.org/TR/prov-o/#description-
starting-point-terms. 

http://www.w3.org/TR/2013/REC-prov-dm-20130430/


D5.5 – Standards and Best Practices  

 

[Public]  - Page 43 of 45 - 

Annex 2  

The FAIR codes listed in the table below is based on [20], and more information about the FAIR metrics 

can be found on fairmetrics.org. 

FAIR 

CODE 

Very brief explanation Standards, suggestions with comments. 

FM1-F1A Global identifiers used. e.g.  

• DOI, ror.org, ORCID and well known IRI schemes based 

on good practices e.g., concepts and their associated 

UUID or Hex hash digest. 

• IRI Internationalised URI.  RFC 3987 (identifiers) 

• DOI(Crossref): Digital Object Identifier. Popular with 

scientific assets like published papers and data. 

• ORCID: Open Researcher and Contributor ID  

• Ror.org: Permanent ID registry for organisation and 

institutions. 

• Hex hash digest (among others) 

• MD5 

• Hash algorithm. RFC 1321 

• SHA   

• Family of hash algorithms RFC 4634. 

• W3C Asset Description Metadata Schema (ADMS) 

• We can use ADMS for identifiers that are text literals 

like e.g. ISBN 

FM1-F1B 

 

The identifier must be 

permanent. 

(Persistent Identifier) 

Same as above. 

FM-F2 Rich metadata. In our case, semantic linked data. Extendible in many ways 

and with multiple serialisations. 

FM-F3 Data includes identifiers. The metadata contains the identifiers of other objects, 

including the data. 

FM-F4 Data indexed in a 

searchable resource. 

Public data can be searched somewhere public. 

FMA1 Retrievable by identifier 

using a standard 

protocol 

Yes, HTTP  



D5.5 – Standards and Best Practices  

 

[Public]  - Page 44 of 45 - 

FM-A1.1 Open, free etc 

communications 

protocol. 

Yes, HTTP 

FM-A1.2 

 

Protocol allows for 

authentication and 

authorisation. 

Yes 

FM-A2 Metadata serialisation is 

accessible even when 

data files are no longer 

available. 

Yes  

FM-I1 It uses language for 

knowledge 

representation. 

Enumeration of standards. 

This list can be expanded as needs arise. 

 

• W3C OWL 2: Web Ontology Language 

• Topics categories (coarse)/ Themes (fine) (i.e. not free 

keywords) 

• Scientific categories: EuroSciVoc 

• Multiple serialisations of RDF: 

• W3C RDF Schema> Resource Description Framework. 

(e.g., W3C JSON-LD JSON for Linked Data. RDF 

document (serialisation). 100% backward compatible 

with JSON.) 

• COAR for access level  (e.g.) Confederation of 

Open Access Repositories.  

• Metadata for CSV files: W3C CSVW Vocabulary for 

tabular data on the web. 

 

Datasets: 

• W3C DCAT Data Catalog Vocabulary based on OWL2 

and RDF. Includes elements from DCTERMS, FOAF and 

PROV-O. Non-normative vocabularies and ontologies 

also suggested. 

  

Further provenance and lineage: 

• W3C PROV-V Provenance Vocabulary. 



D5.5 – Standards and Best Practices  

 

[Public]  - Page 45 of 45 - 

Duration and timestamping: 

• ISO 639-1: Two characters language ID.  

• ISO 639-2: Three characters language ID.  

• ISO 8601: Datetime standard (RFC 3339).  

Scientific parameters and I/O: 

• W3C DQV Data Quality Vocabulary. (e.g., for scientific 

I/O, parametrisation) 

• ISO 17369:2013 aka SDMX 2.1 Statistical Data and 

Metadata Exchange (e.g. for scientific attributes) 

• QUDT (for SI units) 

Scientific Description: 

• EMMO 

FM-I2 

 

Vocabularies used are 

themselves FAIR. 

Yes. International standards. 

FM-I4 

 

It uses qualified 

references to other 

metadata. 

Yes. International standards. 

FM-R1 Richly described with 

accurate and relevant 

attributes. 

Yes, it is extendible and progressively enriched. 

FM-R1.1 

 

It must have open 

licences identifiers. 

Other licences identifiers 

can be added. 

ISO/IEC 5962:2021 aka SPDX 2.2.1 Software Package Data 

Exchange. (e.g., Open licences identifiers) 

 

FM-R1.2 

 

Detailed provenance 

must be possible 

DCAT (datasets) and PROV-O. 

FM-R1.3 

 

Meets community 

standards 

Metadata and data (files) are processable by users. Open file 

standards encouraged. Data views on request (if applicable). 

 


