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Abstract. Data analysis including ML are essential to extract insights from pro-
duction data in modern industries. However, industrial ML is affected by: the low
transparency of ML towards non-ML experts; poor and non-unified descriptions
of ML practices for reviewing or comprehension; ad hoc fashion of ML solutions
tailored to specific applications, which affects their re-usability. To address these
challenges, we propose the concept and a system of executable Knowledge Graph
(KG). It relies on semantic technologies to formally encode ML knowledge and
solutions in KGs, which can be translated to executable scripts in a reusable and
modularised fashion. In addition, the executable KGs also serve as common lan-
guage between ML experts and non-ML experts, and facilitate their communica-
tion. We evaluated our system extensively with an impactful industrial use case at
Bosch, including a user study, workshops and scalability evaluation. The evalua-
tion demonstrates the system offers a user-friendly way for even non-ML experts
to discuss, customise, and reuse ML methods.

Keywords: Knowledge graph · Machine learning · Data analytics · Industrial
application · Welding monitoring

1 Introduction

Data analysis technologies play an important role in modern manufacturing industries.
Examples include production monitoring, fault detection, root cause analysis, as well
as robot positioning [1–3]. Among these technologies, machine learning attracts sub-
stantial yet increasing attention, for its strong modelling capability without the need
of explicit programming [4] and the voluminous data that become available due to the
introduction of internet of things into manufacturing [5]. Take the welding monitoring
at Bosch as an example (Fig. 1a), which is an impactful automated manufacturing pro-
cess that accounts for the global production of millions of cars every year. In welding
monitoring, massive heterogeneous data from many sources need to be analysed for
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Fig. 1. Three of the activities of machine learning practice for (a) welding quality monitoring:
visual analytics (b), statistical analytics (c), machine learning analytics (d). It faces three chal-
lenges: (C1) transparency of machine learning; (C2) standardised description; (C3) reusability.

various applications to solve different questions, e.g., to estimate or predict numerical
quality indicators that are essential for ensuring high quality car production. Traditional
quality monitoring approaches often require tearing the welded car bodies apart in ran-
dom samples and measuring the diameter of the welded parts connection point, which
is extremely costly. In contrast, data-driven methods like machine learning will help
reduce the waste and contribute to more economical manufacturing industry [6]. Three
important activities of machine learning practice at Bosch (Fig. 1b–d) include visual,
statistical analytics (these two are often known as exploratory data analysis and seen
as important preceding steps for machine learning analytics [7]), and machine learning
analytics based on algorithms such as neural networks.

However, there exist still challenges of machine learning practice (Fig. 1) in modern
industry, which often involve an interdisciplinary team of experts with distinct back-
ground. The transparency of machine learning (C1) to non-machine learning experts is
usually challenging, since the latter often specialise in their domain knowledge and did
not receive excessive training of machine learning that is often required to understand
the sophisticated machine learning methods and interpret the machine learning results.
The non-machine learning experts need to understand machine learning and trust that
machine learning applied in manufacturing robots operating with high electricity can
ensure product quality and personnel safety [8]. In addition, in traditional machine
learning projects, the machine learning procedures, methods, scripts, and decisions are
described in the technical language of machine learning, which is highly dependent
on the person who writes the document. Machine learning knowledge and solutions are
hardly described or documented in a standardised way (C2), causing difficulties for later
review and retrospective comprehension of the projects in big companies like Bosch,
which have strict regulations in reporting the details for later audit and analysis. More-
over, ML solutions are often developed in an ad hoc fashion and tailored to specific
applications, which complicates its reusability (C3) for new data or questions.

To address these challenges, we propose to combine semantic technologies and
machine learning, to encode machine learning solutions in knowledge graphs in a smart
way, so that the knowledge graphs help in describing machine learning knowledge and
solutions in a standardised and transparent way via GUI-based system and knowledge
graphs visualisation. We name our approach as executable knowledge graphs, because
our knowledge graphs can be translated to modularised executable machine learning
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scripts that can be modified and reused for new questions. In particular, our contribu-
tions are as follows:

– We introduce the concept and a basic framework of executable knowledge graph,
that represents the machine learning solutions for solving machine learning ques-
tions. The executable knowledge graphs can be translated into modularised exe-
cutable scripts and are highly reusable.

– We present a use case of Bosch welding monitoring with machine learning, and
derive the requirements for executable knowledge graph system.

– We propose a system of executable knowledge graphs. The system has five layers,
including the layer of semantic artefacts that serve as the schemata of the knowledge
graphs, the of layer semantic modules which construct the knowledge graphs in a
semi-automatic fashion based on GUI, knowledge graph data layer that stores the
knowledge graphs, application layer that covers visual analytics, statistical analytics
and ML analytics, and the (non-knowledge graph) data layer.

– We evaluate our system of executable knowledge graphs extensively: in an user
study that verifies whether our system really help in improve the transparency,
reusability, etc.; and a system evaluation that verifies the scalability of our approach.

The paper is organised as follows: Sect. 2 explains the use case of Bosch Welding
Monitoring, Sect. 4 introduces our framework for executable knowledge graphs, Sect. 5
describes the executable knowledge graph system, Sect. 6 demonstrates the evaluation,
Sect. 3 discusses some related work, Sect. 7 presents the conclusion.

2 Use Case: Bosch Welding Monitoring

Resistance SpotWelding and QualityMonitoring. Resistance Spot Welding is a type
of fully automated and impactful manufacturing process widely applied in automotive
industry [9], accounting for the production of millions of cars globally every year. We
illustrate RSW with Fig. 1a, in which the two electrode caps of the welding gun press
two or three metal worksheets between the electrodes with force, and pass a high electric
current flow through the worksheets. A huge amount of heat is generated due to resis-
tance. The material in a small area between the electrodes will melt, and form a welding
nugget connecting the worksheets, known as the welding spot. The quality of welding
operations is typically quantified by quality indicators like spot diameters, as prescribed
in international and German standards [10,11]. To obtain the spot diameters precisely,
the common practice is to tear the welded car body apart and measure them [11], which
destroys the welded cars and is extremely expensive. Now Bosch is developing machine
learning-based methods to reduce the need of destroyed car bodies and thus reducing
waste, aiming at more economical and sustainable manufacturing [12].

Machine Learning Development: Interdisciplinary, Documented, Reusable.
Machine learning projects at Bosch involve experts of distinct backgrounds [13,14]:
e.g., welding experts know the domain knowledge of the process and the questions
that need to be solved, measurement experts know the data particularities like sensor
setting, data scientists (typically machine learning experts) know the machine learn-
ing technology to solve the question, managers need to prioritise the activities accord-
ing to available resource the strategic interest of the companies. They work together
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for machine learning development yet speak different language. Their communication
requires the transparency of machine learning practice (knowledge, solution, options,
etc.), so that the non-machine learning experts can understand machine learning and
trust that machine learning applied in heavy robots that operate with high electricity
can ensure product quality and personnel safety [15,16]. In addition, Bosch has strict
regulations on documenting and reporting machine learning projects for later review or
audit. Thus, the process of machine learning development, and the developed machine
learning solutions, knowledge, and insights need to be documented properly by the
experts. Moreover, Bosch has many data sources, similar manufacturing processes.
Alone the resistance spot welding has data sources of at least 4 locations and 3 cus-
tomers, while Bosch has other similar welding processes like hot-staking, ultrasonic
welding, etc. Thus the reusability of machine learning solutions is highly desired so
that they can be transferred to similar data or machine learning questions.

Visual Analytics, Statistical Analytics, and ML Analytics. Here we discuss three
important ML activities at Bosch. We refer visual analytics to the visualisation of data
in various plots [17], e.g., line plot, scatter plot, bar plot, heat map. It helps the experts
to gain an intuitive understanding of the data, detect potential interest data subset, and
visualise machine learning results. We discuss statistical analytics as using a broad
range of statistical methods for generating insights from data [18], such as calculation of
mean, median, standard deviation, sliding window filter, outlier detection, etc. machine
learning analytics is understood [19] as relying on two schools of machine learning
approaches, feature engineering and deep learning, to train machine learning models
and make machine learning inference, e.g., classification, regression.

Requirements for Executable Knowledge Graph System. We derive the require-
ments for the proposed system and the executable knowledge graphs in the system as
follows:

– R1 Transparency. Our system should provide standardised description of machine
learning knowledge and solutions and make them easier to understand for the non-
machine learning experts. It is essential for big manufacturing companies like Bosch
since machine learning can only be trusted when they are understood for manufac-
turing industries with high standards of quality and safety regulations.

– R2 Usability. The system should be easy to use, in three aspects [20]: effectiveness
– users can use the system correctly; efficiency – users can use the system fast;
satisfaction – users are satisifed with the system.

– R3 Executability. The executable knowledge graphs in the system should be able to
be translated to scripts that are executable, namely not having bugs.

– R4 Coverage. The executable knowledge graphs should be able to represent most
solutions of visual analytics, statistical analytics, and ML analytics.

– R5 Reusability and Modularity. The system and the executable knowledge graphs
should support users to reuse developed solutions for similar data or questions by
e.g., slightly modifying existing solutions or reusing modules of the solutions.

– R6 Scalability. The scripts translated from the executable knowledge graphs should
not consume excessive time and thus be scalable for large-scale deployment.
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3 Related Work

In recent years, researchers have begun to use graph structures and knowledge graphs
to represent codes and the relationships between them in programming languages.
They both treat code artefacts, which containing classes, methods, variables, as nodes,
use their predefined relationships as edges [21,22], and use them to complete down-
stream tasks like defect prediction [23] and query-based analytics [24]. However, these
approaches only consider the connections and semantic relationships between codes
and insufficiently discuss the more complex graph form, knowledge graphs, which pro-
vide more expressivity, e.g., treat the information flow of data between codes as edges
and define semantic constraints. Many knowledge graphs were discussed in the litera-
ture, e.g., Freebase [25], DBpedia [26]. Specialised knowledge graphs have been used in
areas, e.g., e-commerce [27], procurement [28,29], and healthcare [30]. KGs are gain-
ing popularity in the industries [31–33], but few works were dedicated into describing
machine learning practice in industries.

Fig. 2. Framework of executable knowledge graph

4 Executable Knowledge Graphs Framework

In this section we introduce the framework for executable knowledge graph that repre-
sents the ML solutions (pipelines) for solving machine learning questions. The frame-
work supports the executable knowledge graph to be translated to executable scripts
and modularised, thus the system based on executable knowledge graph can fulfil the
requirements of Executability and Reusability and Modularity.

We first define data, methods and tasks in this framework. Data D is a set of items
of information, it can be in forms such as numerals, diagrams or strings organised in
different structures such as tables. A Method F is a function in form of language-
dependent script. A method takes some data which fulfils certain constraints as input
and can output specific data. Formally, Dout = F(Din). A Task T is the process of
invoking a method by feeding it with some data that meets certain constraints, and
obtaining some other data. Formally, T 〈Din, F〉 = F(Din) = Dout.

Some tasks have methods which are unified, while other more complex tasks can not
solved by invoking a single integrated method while can be unfolded into a sequence
of tasks where each task is a part of the complex one. We refer the complex tasks as
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data pipelines Tp. Formally, a pipeline Tp with input data Din to get Dout, expressed as
Tp〈Din, F〉 = Dout can be unfolded in the sequence {T1, T2, ..., Tn}. Formally:

T1〈Din1 , F1〉 = Dout1 ,Din1 ∈ Din, ...Tn〈Dinn
, Fn〉 = Doutn ,

Dinn
∈

⋃̇
i∈{1,2...n−1}Douti ∪ Din,−→ Dout ∈

⋃̇
i∈{1,2,...,n}Douti .

Based on the above definitions, we determine the framework for the executable
knowledge graphs as the left part of Fig. 2, such executable knowledge graph should
take the form as the right part of Fig. 2. Here we split the properties from the data D,
which strictly speaking also belong to D, but correspond to the properties rather than
objects of a Task. Except those Tasks with their Methods already been integrated
in script, all other Tasks can be modularised in a Pipeline and be unfolded into a
sequence of Tasks. The objectProperty :hasFirstTask connects the Pipeline with the
first task in its unfolded sequence, while :hasNextTask connects the task in the sequence
with its following task. In this framework, as long as theData and Properties of every
Task fulfil the constraints of theMethod in the Task, the Task is executable. If every
Task in a Pipeline is executable, the Pipeline is executable. In addition, as a Task,
the Pipeline can also be a part of another Task, which represents the modularity of
the executable knowledge graph.

Fig. 3. An architectural overview of our knowledge graph solution

5 Our Executable Knowledge Graph Based ML System

5.1 Architectural Overview

We now give an architectural overview of our system. Our system consists of five lay-
ers (Fig. 3). These layers are (from bottom to top): (non-knowledge graph) data layer,
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application layer, knowledge graph database layer, semantic modules layer, and seman-
tic artefacts layer. From the bottom left, we start with the welding raw data collected
from production lines. These data are transformed by the Data Integration module (with
the help of domain ontologies) to Welding-machine learning knowledge graphs, which
is a type of welding data knowledge graph with some machine learning annotation [34].
These knowledge graphs are used by four types of analytics applications in the applica-
tion layer.

The domain ontologies include various welding ontologies, e.g., resistance spot
welding ontology, hot-staking ontology. These ontologies are created based on the
upper domain ontology [2], the manufacturing ontology. The manufacturing ontology
is semantically connected with an upper task ontology, the data science ontology (Ods),
in a way that the datatype properties in the former one are annotated by some classes in
the latter one. A series of task ontologies (Fig. 4), including the visualisation ontology
(Ovisu), the statistical ontology (Ostats), and ML ontology (Oml), are created based
on the Ods. These task ontologies serve as the schemata for the Executable knowl-
edge graph Construction module, which encodes the executable data pipelines in the
executable knowledge graphs, including the visualisation knowledge graph, statisti-
cal knowledge graph, and ML pipeline knowledge graph. These executable knowledge
graphs then can be translated by the Executable knowledge graph Translator module to
executable scripts for three analytics applications: Visual Analytics, Statistic Analytics,
and ML Analytics, which generate the corresponding results.

Fig. 4. Task Ontologies for the executable KG

5.2 Semantic Artefacts

We now introduce our ontologies some of which are in Fig. 4.

Upper Domain Ontology and Domain Ontologies. The upper domain ontology, the
manufacturing ontology, consists of 1170 axioms containing 95 classes, 70 object prop-
erties and 122 datatype properties [9]. It is an OWL 2 ontology modelling the general
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knowledge of discrete manufacturing process, which refers to a broad range of manu-
facturing processes whose products are easily identifiable and countable, e.g., welding
spots, and differ greatly from continuous process manufacturing where the products are
undifferentiated, e.g. petrol. The ontology has the manufacturing operation as the most
important class, and has other classes to describe other concepts related to the operation,
e.g., the operations process resource, produce products and are performed by machines.
The domain ontologies describe several manufacturing domains at Bosch, e.g., resis-
tance spot welding ontology, hot-staking ontology [35]. These ontologies are created
by domain experts in such a way that all classes (properties) in the domain ontologies
are sub-classes (sub-properties) of that in upper domain ontologies.

Data Science Ontology. The upper task ontology is the data science ontology Ods

(OWL 2) created by Bosch data scientists, which formalise the general knowledge of
data science activities. It contains three most important classes (Fig. 4a):Data that is the
class of all data concepts (the existential being in data science), Method is the class of
all algorithms and functions (the way that data move), whose allowed input, output and
parameters are defined, and Task is the class of the scripts that invoke the functions,
which has an important sub-class, Pipeline that consists of a series of ordered tasks
(the way that the data movement is organised). The Data can have DataSemantics
that describe the meaning of data and DataStructure that prescribes the format (in the
form of datatype properties) of the data, e.g., a TimeSeries has the format Array . A
DataEntity is the class for a concrete dataset or a feature. In addition, there exist some
constraints, e.g., an Array must have XDimension greater than 1 and YDimension
smaller than 2.

Fig. 5. The executable KG for visualisation (a) and its results (b). It needs to be created in Visu-
Task1 in the user study (Sect. 6), which aims to visualise the ML learning results by plotting the
q-value arrays of target (ground-truth), and estimated q-value training and test.

Visualisation, Statistical, and Machine Learning Ontologies are the three task
ontologies created based onOds in such as way that all classes in the task ontologies are
sub-classes of that in Ods, and all properties in the task ontologies are sub-properties of
that in Ods. The visualisation ontology Ovisu describes most common visual analytics
methods, such as Lineplot , Scatterplot , etc., and theDataStructure that is allowed for
themethods, e.g., Lineplot allowsArrays as input. In addition,Ovisu also prescribes the
construction of a visualisation Pipeline, which should has the CanvasTask as the first
task, several PlotTask after that, and has DescriptionTask as the last task. Similarly,
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the statistic ontology Ostats (and the machine learning ontology Oml, resp.) describes
the most common statistical analytics (machine learning analytics, resp.) methods, their
allowedDataStructure, and the organisation of the tasks in Pipeline. In addition, some
rules determine explicitly the constraints between the input data of Task , e.g., the input
DataEntitys of theConcatenation task should have the same concatenation dimension.

Executable Knowledge Graphs. Based on the task ontologies, executable knowledge
graphs are constructed for visual, statistical and machine learning analytics, including
visualisation, statistical and Machine Learning Knowledge Graphs. All such knowl-
edge graphs are in the form of pipelines, which consist of a series of tasks. We illustrate
this with example knowledge graphs in Fig. 5, Fig. 6, and Fig. 7.

5.3 Executable KG Construction

In our system the executable KGs are constructed semi-automatically in three ways:
KG creation, KG modification and KG integration.

Executable Knowledge Graph Creation via GUI is common for relative easy ones
such as visualisation and statistical knowledge graphs. For ML pipeline knowledge
graphs, advanced users can also create knowledge graphs from the scratch, but most
users would prefer to modify or integrate existing ML pipeline knowledge graphs.

Fig. 6. The knowledge graph for (a) computing the outliers of the Q-Value array and (b) visu-
alising the Q-Value array and its the trend, scattering statistical analysis. (c) The visualisation
diagram of (b). (a) and (b) are used in VisuT2 and StatsT3 in Table 2, respectively.
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Visualisation Knowledge Graph (Fig. 5a). Once the user chooses to create a visualisa-
tion knowledge graph, by default the GUI will show a owl:NamedIndividual with the
label VisualPipeline (the user can change it), the CanvasTask and DescriptionTask .
Next the users will need to select the input data (commonly a csv file), and several
PlotTasks from available tasks based on Ovisu, between the CanvasTask and the
DescriptionTask . For each PlotTask , the input data, the method and some parameters
will mandatorily be given based onOvisu. After that, the visualisation knowledge graph
creation is finished.

Statistical Knowledge Graph (Fig. 6a). Once the user chooses to create a statistical
knowledge graph, by default the GUI will show a owl:NamedIndividual with the label
StatisticalPipeline, and the DictionaryTask , which wraps the output into a dictionary
(user can opt to delete it). Next the users will need to select the input data (commonly
a csv file), and StatisticalTasks from available tasks based on Ostats. For each Sta-
tisticalTask , the users need to select the input data, the method and some mandatory
parameters, based on Ostats. After the user configuration, constraints verification and
resolution, the statistical knowledge graph creation is finished.

Executable Knowledge Graph Modification. Another way to create an executable
knowledge graph is to modify existing knowledge graphs, which is common for all
three types of knowledge graphs, especially ML pipeline knowledge graphs.

Statistical Knowledge Graph (Fig. 7a–b). Once the user chooses to modify an existing
knowledge graph, first the user needs to load a knowledge graph from our knowledge
graph database. Now we load the statistical knowledge graph in Fig. 7a, which calcu-
lates mean, standard deviation (std.), minimum (min.), and maximum (max.) from an
array. We want to modify this knowledge graph to another knowledge graph that can
do z-score normalisation, which subtracts the mean from the array and then divides by
std., (arr − mean)/std.. To achieve this, the user only need to delete the two statis-
tical tasks, namely MinimumCalculation (Fig. 7 3) and MaximumCalculation (Fig. 7
4), then add another task NormalisationCalculation (Fig. 7 6) (which has Normali-
sationMethod , and select its input as the MeanValue and StandardDeviation. After
that, the system will suggestNormalisedData as the output of the taskNormalisation-
Calculation. The user then select NormalisedData as the final output of the pipeline
and change the label of the pipeline. Knowledge graph modification is done.

Machine Learning Knowledge Graph. (Fig. 7c) takes TimeSeries and SingleFea-
tures as input data, and does LRRegression to predict the Q-Value. The users can
simply change the input data, output data, and method of the pipeline, by changing the
named individuals, e.g., the users can delete TimeSeries if they do not have the sensor
curves in their data, because the sensor curves are costly to collect. The users can also
change the machine learning method (from LRRegression to MLP), the output data
(from Q-Value to spot diameter) and some hyper-parameters (MLT2 in Table 2).

Executable Knowledge Graph Integration. (Fig. 6), where a statistical pipeline that
does outlier detection can be integrated with a visualisation pipeline to visualise the
detection results. To do so, the users only need to select one output of Fig. 6a, the



Executable KG for ML: A Bosch Case of Welding Monitoring 801

Fig. 7. (a) StatsExtractPipeline that extracts four statistics for a data array: mean, std., min.,
max. (b) DataNormalisePipeline that performs z-score normalisation for a data array. (c)
MLPipeline that takes time series and single features as inputs and relies on linear regression
(LRMethod). (a)(b)(c) are used in StatsT1, StatsT2,MLT1 in Table 2, respectively.

DataDictionary , Trend , and Scattering) as the inputs of the TrendVisualPipeline
in Fig. 6b. Another example is Fig. 7c, which is the result of reusing/integrating the
StatsExtractPipeine (Fig. 71) in Fig. 7a and DataNormalisationPipeline in Fig. 7b.

5.4 Executable Knowledge Graph Translation

The translation of executable knowledge graphs is language-dependent. Here we use
Python as the language for discussion. Each individual of Method is a Python func-
tion script, whose mandatory inputs/outputs and parameters are clearly defined. Each
executable knowledge graph is in the form of a Pipeline, which consists of a series
of Tasks of sequential or parallel structures connected with hasNextTask . Thus, the
translation of an executable knowledge graph invokes the Python function scripts with
the inputs/outputs and parameters given by DataEntity and datatype properties of
knowledge graphs, according to the order defined by hasNextTask .
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6 Evaluation

6.1 User Study: Transparency and Usability

Design of the User Study. We invited 28 experts in backgrounds of machine learning
experts, welding experts, sensor engineers, etc. to attend the user study. For the user
study, we first give a short introduction of our system, then the participants will perform
a series of tasks related to visual, statistical and machine learning analytics, and finally
they will answer questionnaires to record their subjective evaluation. For the tasks,
to avoid user bias, we divided the participants into two groups, who will follow the
schedule in Table 1. To contrast the situation of doing analytic tasks without and with
our system, we designed the workflow as follows: Each group, including 2 machine
learning experts and 12 non-machine learning experts, will first perform an analytic task
without our system (T1), e.g. VisuT1 for Group A, and answer several single selection
questions (SSQ) to test the understanding of the non-machine learning experts about
the task (T2). We have designed 5–7 SSQs for each task, and there are 18 SSQs in total
(Table 3). Then, they will do a similar task with our system (T3) and answer the SSQs
(T4). Finally, they will revisit the previous task (T1) with our system. The same process
repeat for the StatsT (T6–T10) and MLT (T12–T16). In addition, we design T11, T17
and T18 to test whether our system can realise the modularised reuse of executable
knowledge graphs.

Tasks and Metrics. We list the tasks, their content and their knowledge graph visu-
alisation in Table 2. For each task, the machine learning experts will explain the non-
machine learning experts the tasks. In the case of “without our system” (T1, 6, 12), the
experts communicate with technical language, and the non-machine learning experts
will need to perform the tasks. Due to time limit, it is infeasible to do coding during
the user study. The non-machine learning experts will answer whether they can finish
the tasks with their programming an machine learning knowledge, and estimate the
needed time for that. Thus, we will have two metrics: complete percentage and time.
In addition, we compare the answers of SSQs with the correct answers and record the
correctness (T2, 7, 13). In case of “with our system” (T3, 5, 8, 10, 11, 14, 16–18), the
experts communicate using our system and the non-machine learning experts will need
to perform the tasks. They do so by creating, modifying or merging knowledge graphs
via a GUI. We record their actions and needed time for each task, and compare their
action with a ground truth (we designed the task and GUI to make such comparison
possible) to measure the correctness. Some users cannot finish the task, and thus we
also recorded the complete percentage. In addition, we compare the answers of SSQs
with the correct answers and record the correctness (T4, 9, 15).

Results and Discussion. We first look at results of using our system (Fig. 8a–c). It can
be seen that most users have a high complete percentage (above 90%) using the system.
When they complete the tasks, their correctness is also very high, about 80% (effective-
ness, R2), even for the complex tasks T17 and T18. In addition, they usually do not need
much time for each task, in average only 227.3 s, about 4min (user efficiency, R2). Then
we compare the correctness of SSQs without and with our system (Fig. 8d), which also
show that the non-experts can gain better understanding of the three machine learning
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Table 1. Workflow of the tasks in the user study.

# Group A Group B Method

T1 VisuT1 VisuT2 Without our system

T2 VisuT1 SSQ VisuT2 SSQ –

T3 VisuT2 VisuT1 With our system: create KG

T4 VisuT2 SSQ VisuT1 SSQ –

T5 VisuT1 VisuT2 With our system: modify KG

T6 StatsT1 StatsT2 Without our system

T7 StatsT1 SSQ StatsT2 SSQ –

T8 StatsT2 StatsT1 With our system: create KG

T9 StatsT2 SSQ StatsT1 SSQ –

T10 StatsT1 StatsT2 With our system: modify KG

T11 StatsT3 StatsT3 With our system: modify KG

T12 MLT1 MLT2 Without our system

T13 MLT1 SSQ MLT2 SSQ –

T14 MLT2 MLT1 With our system: modify KG

T15 MLT2 SSQ MLT1 SSQ –

T16 MLT1 MLT2 With our system: modify KG

T17 ComplexTask1 ComplexTask1 With our system: merge KG

T18 ComplexTask2 ComplexTask2 With our system: merge KG

Table 2. Tasks and their content

Tasks Content KG

VisuT1 Visualise machine learning results with three line plots: target, estimated
training, estimated test

Fig. 5

VisuT2 Visualise a quality indicator, its trend and scattering with scatter plots
and line plots

Fig. 6b

StatsT1 Extract four statistics from a sequence: mean, std., min. and max Fig. 7a

StatsT2 Z-score normalise a vector by substracting the mean and dividing by the
standard deviation

Fig. 7b

StatsT3 Compute the trend, scattering and outliers of a sequence with median
filter, etc.

Fig. 6a

MLT1 Reuse a ML pipeline for q-value estimation with linear regression Fig. 7c

MLT2 Reuse a ML pipeline for diameter estimation with multilayer perceptron Fig. 7c

ComplexT1 Visualise the results of StatsT1: merging/reusing the pipelines of StatsT1
and VisuT2

Fig. 7c

ComplexT2 Visualise the results of MLT1: merging/reusing the pipelines of StatsT1,
StatsT2, MLT1 and VisuT1

Fig. 7c
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Table 3. Examples of single selection questions (SSQ) for machine learning tasks.

Questions (Q) and Answers (A)

Q1: What are the input data we use for machine learning training? I: single features, II: sensor
curves, III: quality indicator

A1: (A) I + II + III (B) I + II (C) II (D) II + III

Q2: What is the output feature we try to estimate?

A2: (A) Diameter (B) Q-value (C) Current mean (D) Process stability factor

Q3: What features will be the input of StatsExtractPipeline? I: single features, II: sensor curves,
III: quality indicator

A3: (A) I + II + III (B) I + II (C) II (D) II + III

Table 4. Questionnaires (partial) and scores for subjective evaluation. The scores range from
1 (disagree), 2 (fairly disagree), 3 (neutral), 4 (fairly agree), to 5 (agree). The column Score
is aggregated by reversing the scores of negative questions (such as Q2, 4, 6, 8, 9) and then
computing the average (avg.) and standard deviation (std.) (avg.±std.)

# Questions Dimensions Score

Q1 (For ML experts) I am confident to help non-expert to develop ML
approaches based on the system

R1 Transparency 4.28 ± 0.47

(For non-ML experts) I found it’s easy to get basic understanding for ML
approaches based on the system

Q2 I felt the system hampers the communication on ML approaches

Q3 I felt very confident using the system R2 Usability 4.73 ± 0.39

Q4 I thought there was too much inconsistency in this system

Q5 (For ML experts) I have confidence in the system to perform ML tasks R3 Executability 4.60 ± 0.72

(For non-ML experts) I am happy about the executability of this system

Q6 I need the support of technical persons to be able to use this system

Q7 I think the system can in general cover my need R4 Coverage 4.24 ± 0.83

Q8 (For ML experts) I found the system didn’t cover some basic ML
functions that are commonly used in industry

(For non-ML experts) I think the system has very limited application in
production

Q9 (For ML experts) I think the ML pipelines developed in the system can
only be reused in a limited range of applications

R5 Reusability 4.87 ± 0.36

(For non-ML experts) I don’t think I would try to reuse a developed
pipeline when facing a new task

Q10 I am happy that the system reduce time for reusing developed pipelines.

activities (transparency, R1), as their SSQ correctness systematically increases when
they use our system for communication. The comparison of time and task correctness
without (w/o) and with (w) our system (Fig. 8e–f) shows that when users doing tasks
with our systems they can save substantial time and increase the complete percentage
(user efficiency, R2), and make analytics tasks that cannot be done by the non-machine
learning experts now doable (usability, R2). The users also save much time when they
reuse and modify (contrasting bars with m and w) existing knowledge graphs to solve
the tasks.
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It can be seen from the scores of questionnaires (Table 4) that the users indeed think
our system improves the transparency (R1), and has good usability (R2), as these scores
are all above 4. In addition, the users also satisfied with the coverage of the tasks (R4),
and the reusability and modularity of the analytics pipelines (R5) brought by our sys-
tem. The later two will be further discussed in the next section.

6.2 Evaluation of Executability, Coverage, and Reusability

Executability (R3). Beside the 9 executable knowledge graphs in the user study, we
also programmatically generate 1372 executable knowledge graphs covering most of
the tasks (Table 5) encountered by automated modification of a set of executable knowl-
edge graph templates. As expected, all these knowledge graphs can be translated into
scripts that are executable (Fig. 9). Thus, the executable knowledge graphs that follow
the our framework in Sect. 4 are also evaluated as executable.

Coverage (R4). We organised extensive workshops with the machine learning and
non-machine learning experts. After discussion, we categorised most tasks of visual,
statistical and machine learning analytics encountered in our project in groups (see
Table 5), and give the coverage percentage according to our empirical cases. Observe,
for the 3 groups of visual analytics, and 5 groups of statistical, most of them can be
covered (above 80%). While for the feature engineering school of machine learning
analytics, we cover 80%. The feature learning school is currently not our focus of the
work.

Fig. 8. The user study results in time (a), complete percentage (b) and correctness (c); comparing
the SSQ correctness between without and with our system (d); comparing users doing tasks with-
out (w/o) and with (w) our system or only modify knowledge graph (m) in time (e) and complete
percentage (f)
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Table 5. Tasks categories and coverage

Category Sub-category Coverage

Visual
Line plot, scatter plot, bar chart 100%

Pie chart 85%

Heatmap 85%

Statistic

Statistics calculation 95%

Basic mathematical operation 100%

Sliding window filtering 90%

Sub-sampling 80%

Interpolation & extrapolation 80%

ML
Feature engineering 80%

Feature learning 0%

Reusability (R5). In user study, multi-
ple tasks demonstrate the high reusabil-
ity and modularity supported by our sys-
tem. In T5, 10, 14, 16 (Fig. 5a, Fig. 6a,
Fig. 7a and c), users modify existing
knowledge graphs by adding named
individuals and changing task param-
eters, and thus reuse the knowledge
graphs for new tasks, which is a strong
evidence of reusability. In T17 and
18 (Fig. 7c), they simply merge exist-
ing knowledge graphs and form more
complicated ones, this demonstrates the
modularity (and thus also reusability).

6.3 System Evaluation of Scalability

Apart from the aforementioned requirements, we evaluate the scalability (R6) of our
system for large deployment. We tested the running time of different types of analytics
pipelines for welding quality monitoring (Fig. 9). The tasks include 1372 programmati-
cally generated analytics pipelines and thus 1372 executable knowledge graphs, includ-
ing 242 knowledge graphs for visual analytics, 253 knowledge graphs for statistical
analytics, 291 merged knowledge graphs that combine visual and statistical analytics,
272 merge knowledge graphs the combine statistical and ML analytics, and 314 merge
knowledge graphs that combine three of them. We conducted experiments on an Mac-
Book Pro with Apple M1 Processor, 16GB of RAM. To have controllable scope, we
tested these executable knowledge graphs on a sample welding production dataset col-
lected from a factory in Germany. The dataset is in the form of relational tables after
integration, and contains 4585 welding operation records.
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Fig. 9. System evaluation results for the Bosch welding use cases. x-Axis: number of tasks.
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Results and Discussion. The running time (including knowledge graph translation and
execution time) in Fig. 9 demonstrate that our system scales well since it takes limited
time to translate the executable knowledge graphs to scripts and execute the scripts.
Specifically, the running time grows sublinearly with respect to the number of tasks. On
the most right hand side, 300 of the most challenging tasks, namely the hybrid tasks that
combine statistic, machine learning modelling and visual analysis only takes less than
3min on the given data, which is considered to have good scalability by our experts.

7 Conclusion, Lessons Learned, And Outlook

In this work we present our concept and system of executable knowledge graphs, which
address the challenges of transparency, formal description, and reusability of machine
learning practice, including visual, statistical, and machine learning analytics tasks. The
system helps users to do the machine learning-related analytics tasks by providing a
GUI and executable knowledge graphs that can be translated to executable scripts. We
evaluated our approach with a user study, discussion, workshops, and system evaluation
and obtained promising results. The lessons learned for us that as follows: many users
are very interested in machine learning-related knowledge and solutions. They are eager
to spend time to learn such knowledge and practice machine learning, but did not have
a good starting point. They highly value our system and proposed many comments for
improvement, especially for the GUI, and for covering the hyper-parameter tuning and
feature learning. In the future, we plan to further improve our system, to host the system
regularly on the Bosch environment and constantly collect more user feed-backs. We
also plan to develop more theory to improve the generality of the approach.
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